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SEMANTIC CORRECTNESS FOR A PARALLEL
OBJECT-ORIENTED LANGUAGE*

J. J. M. M. RUTTENT

Abstract. Different semantic models are studied for a language called POOL: parallel object-oriented
language. It is a simplified version of POOL-T, a language that is actually used to write programs for a
parallel machine. The most important aspect of this language is that it describes a system as a collection of
communicating objects that all have internal activities which are executed in parallel. For POOL, operational
and denotational semantics have been developed previously. The former aims at the intuitive operational
meaning of the language, whereas the main characteristic of the latter is compositionality. In this paper,
the author relates both models, which are quite different, and proves the semantic correctness of the
denotational semantics with respect to the operational semantics. These semantic investigations take place
in the mathematical framework of complete metric spaces. For the operational semantics a simple space of
functions from states to compact sets of streams (which are sequences of states) is used; for the denotational
semantics, a domain of processes is used, which is the solution of a reflexive domain equation over a category
of complete metric spaces. The main mathematical tool we use is Banach’s theorem, which states that
contractions on complete metric spaces have unique fixed points. Both the operational and the denotational
semantics are reformulated and are presented, as well as many operators on the semantic domains, as the
fixed point of a suitably defined contraction. In this way, a formal equivalence between both models is
established. For this purpose, an intermediate domain, which is first compared to the operational model by
means of an abstraction operator, is introduced. This function takes processes, which are treelike structures,
as arguments and yields sets of streams as results. Next, it is shown that both intermediate and the denotational
model are fixed points of the same contraction, from which their equality follows. From both facts, the
main result of this study follows: The operational meaning of a POOL program is equal to the denotational
meaning to which the abstraction operator is applied. In this manner, the correctness of the denotational
semantics with respect to the operational semantics is established.
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ming, semantic correctness, complete metric spaces, contractions
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1. Introduction. We study different semantic models for a language called POOL:
parallel object-oriented language. Although the theoretical foundations of object-
oriented programming in general, and of parallel object-oriented programming in
particular, have not been paid much attention to, this language has been extensively
studied in a formal semantic context: In [ABKRS86(a)] and [ABKR86(b)], an
operational and a denotational semantics of POOL have been developed. The main
goal of this paper is to compare the two models, which are quite different, by proving
some formal relation between them, which at the same time will establish the correctness
of the denotational semantics with respect to the operational semantics. Before we
explain in some detail the language POOL and the contents of this paper, we first give
a short explanation of the notion of semantic correctness and the way it can be proved.

A semantics for a programming language % is a mapping 4 : £ - D, where D is
some mathematical domain (a set, a complete partial ordering, a complete metric
space), which we call the semantic universe of M. Sometimes # is called a model for
#. Traditionally, two main types of semantics are distinguished: operational semantics
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and denotational semantics. Without getting involved in a discussion about the precise
definitions, we state that in our view the main characteristic of the former is that its
definition is based on a transition relation [HP79], [PI81], [PI83]; a denotational
semantics is characterised by the fact that it is defined in a compositional manner: the
denotational semantics of a composite statement is given in terms of the denotational
semantics of its components. (As a second distinctive property one often considers the
way in which recursion is treated: The usual view is that an operational semantics
treats recursion by means of so-called syntactic environments (or body replacement),
whereas a denotational semantics uses semantic environments, in combination with
some fixed-point argument.)

Now consider an operational semantics 0: £ - D and a denotational semantics
9D : £~ D'. Anatural question is whether & is correct with respect to 0, that is, whether
9 makes at least the same distinction as @ does. (Often, & makes more; see [KR88]
for a simple example.) If we define for a semantics # : £ - D" an equivalence relation
= 4 by

s =yt Ms]=M[1],

for all x, t € &, then the correctness of & with respect to @ can be formally expressed
by the condition

< =g¢.

One way to prove the correctness of & is to introduce a so-called abstraction
operator «: D’ D, which (is, in general, not injective and) relates the denotational
semantic universe with the operational one. If one can prove that

O=a°9,

then a precise relation between 0 and & has been established, which moreover implies
the correctness of 9 with respect to 0.

As a mathematical framework for our semantic descriptions we have chosen
complete metric spaces. (For the basic definitions of topology see [Du66] or [En77].)
In this we follow and generalize [BZ82]. (For other applications of this type of semantic
framework see [BKMOZ86].) We follow [KR88] in using contractions on complete
metric spaces as our main mathematical tool, exploring the fact that contractions have
unique fixed points (Banach’s theorem). We shall define both operators on our semantic
universes and the semantic models themselves as fixed points of suitably defined
contractions. In this way, we are able to use a general method for proving semantic
correctness: suppose we have defined O as the fixed point of a contraction

O (&L>D)>(¥~>D).

If we next show that also @ ° @ is a fixed point of ® then Banach’s theorem implies
that 0 =« © 9. Thus complete metric spaces facilitate an equivalence proof that is
clearly structured and that, due to the uniqueness of the various fixed points involved,
is considerably shorter than it would have been in case, e.g., complete partial orders
had been used.

It is the approach sketched above that will be applied to the language POOL.
Before doing so, we start in § 2 with a toy language that is extremely simple but has
a construct for process creation in common with POOL. This section can be seen as
a prolongation of the introduction and tries to give the reader some feeling for the
techniques used. Since no definitions or results of this section are used in the other
sections it can be skipped without any problem.
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The language POOL is described in detail in § 3. It is a simplified version of the
language POOL-T, which is defined in [Am85] and for which [Am86] and [Am387]
give an account of the design considerations. POOL-T was designed in subproject A
of ESPRIT project 415 with the purpose of programming a highly parallel machine,
which is also being developed in this project (see [Od87] for an overview). The language
provides all the facilities needed to program reasonably large parallel systems, and
several large applications and many small ones have been written in it.

In POOL, a system is viewed as a collection of objects. These are dynamic entities
containing data (stored in variables) and methods (a kind of procedures). Objects can
be created dynamically during the execution of a program and each of them has an
internal activity (its body) in which it can execute expressions and statements. While
inside an object everything proceeds sequentially, the concurrent execution of the
bodies of all the objects can give rise to a large amount of parallelism. Objects can
interact by sending messages to each other. Acceptance of a message gives rise to a
rendez-vous between sender and receiver, during which an appropriate method is
executed.

In § 4, we follow [ABKR86(a)] in defining an operational semantics for POOL.
It is based on a transition relation and is given, and here we differ from [ABKR86(a)],
as the fixed point of a contraction. The semantic domain used is a complete metric
space of (functions from states to) compact sets of streams, which are sequences of
states.

In § 5, we present a denotational semantics for POOL, very similar to the model
given in [ABKR86(b)]. We define a mapping from the set of POOL programs (called
units) to some reflexive domain of processes P (cf. [P176]), which is a complete metric
space with treelike structures for its elements. It satisfies a reflexive domain equation,
which is solved by deriving from it a functor on a category of complete metric spaces
and then taking the fixed point of this functor. The mathematical techniques to do so
are sketched in § 2 of [ABKR86(b)] and presented in detail in [AR88]. Before we
assign a semantic value to the unit as a whole, we first define the semantics of expressions
and statements, which will be given by functions of the following type:

Dg:Lg > AObj > Contg » P and Ds:Lg~> AObj—> Conts~ P,
where Lg and Lg are the sets of expressions and statements and
Contg = Obj > P, Conts= P,

The semantic domain AObj stands for the set of (active) object names. Its appearance
in the semantics of expressions and statements reflect the fact that in POOL each
expression or statement is evaluated by a certain object. Further, a continuation will be
given as an argument to the semantic functions. This describes what will happen after
the execution of the current expression or statement. As the continuation of an
expression generally depends upon the result of this expression (an object name), its
type is Obj - P, whereas the type of continuations of statements is simply P. The use
of continuations makes it possible to define the semantics, especially of object creation,
in a convenient and concise way. (For more examples of the use of continuations in
semantics, see [Br86] and [Go79].)

After having defined an operational and a denotational semantics for POOL, we
come to the main subject of our paper: The comparison of both models. This constitutes
a nontrivial problem, mainly because, first, the respective semantic domains are very
different and, second, because the denotational semantics is defined in terms of
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continuations, whereas the operational semantics is direct, that is, doe_s not use continu-
ations. Moreover, the communication mechanism of POOL (consisting of message
passing with method invocation) is dealt with quite cl.lfferenﬂy b.y the two models. TlTe
solution that we propose consists of the introduction of an 1nte}'med1at§ semantic
model, in § 6, which has in common with the operational semantics that it is direct
(without continuations) and that it is based on the same transition relation, but V{hiCh
has for its range the same reflexive domain of processes as doe§ the denotational
model. Then, in § 7, this intermediate model is related to the operational semantics by
means of an abstraction operator, which takes processes as arguments and yields sets
of streams. Next, it is connected with (an extended version of) the denotational
semantics by the observation that both models are fixed point of the same contraction.
As a result, it follows that the operational semantics of a unit equals its denotational
meaning to which the abstraction operator is applied.

Section 7 is followed by three appendices. Appendix I gives the mathematical
definitions we use; in Appendix II, the abstraction operator that is used in the proof
of the semantic correctness for POOL is defined in all formal detail. Finally, Appendix
I11 shows how the language POOL can be extended with so-called standard objects
and how the definitions and proofs can be adapted in order to obtain a similar
correctness result for the extended language.

Semantic treatments of parallel object-oriented languages in general are scarce;
we only know [CI81], which gives a detailed mathematical model for an actor language.
This is done by defining a set of so-called augmented actor event diagrams, each of
which is a fairly complicated structure representing (the beginning of) a single computa-
tion. In order to deal with nondeterminism, a novel power domain construction is
used. As to the comparison of operational and denotational semantics for languages
with process creation, we only know of [AB88], where some simplified versions of
POOL are studied. None of these languages, however, contains the original POOL-T
constructs for communication (for message passing with method invocation), the
treatment of which, in the correctness proof, we consider to be an essential part of
this paper.

2. A very simple language with process creation. Before we tackle the main problem
of this paper, we would like to start with a much simpler case: We introduce a very
small “toy” language Ly and present an operational and a denotational semantics for
it. Next, we shall compare these two models. All this can be regarded as a little exercise,
a “‘warming up” so to speak, aiming at a better understanding of what follows in the
next section: It turns out that for both the languages Ly and POOL (to be introduced
in the next section) the operational and denotational semantics can be compared in
very much the same way.

For the definition of L we need a set (a, b €)A of elementary actions. (Throughout
this paper, we shall use the notation (x, y €)X for the introduction of a set X with
typical elements x and y.) For A we take an arbitrary, possibly infinite, set. It will
contain a subset (ce)C < A of so-called communications. Similarly to CCS [Mil80],
we define a bijection ": C > C with ~o ~=id.. It yields for every ce C a matching
communication ¢ In A\C we have a special element 7 denoting successful communi-
cation.

DEeFINITION 2.1 (Syntax for Ly). The set of statements (s, t€)L; is given by

5= als,; so|new ().

Note that ae A2 C. To L we add a special element E, denoting the empty statement.
Note that syntactic constructs like s; E and new (E ) are not in L.



SEMANTIC CORRECTNESS FOR POOL 345

A statement is of one of the following forms. First, it can be an elementary action
a. Here elementary means that it is an uninterpreted action. Examples of possible
interpretations are assignments, or read and write actions. Second, a statement s can
be the sequential composition s,; s, of statements s; and s,. Finally, it may be a
new-statement new(s), the execution of which amounts to the creation of a new process
that executes s. A more detailed explanation will follow below.

The operational semantics will be formulated using the notion of parallel state-
ments. A parallel statement is a finite sequence of statements that are to be executed
in parallel.

DEeFINITION 2.2 (Parallel statements). Let (p, 7 €)Par be given by Par=(Ly)*,
the set of finite sequences of statements. Typical elements will also be indicated by
(81, "+ ,8,, for n=1. For p=(s;, +-,s8,) and 7=(t;, - -,1,) we define p"m=
(Sl;' c S, b, ",tm>-

Next we define the operational semantics of parallel statements. It is based on
the well-known notion of a transition relation (in the style of Hennessy and Plotkin
[HP79], [PI81], [P183].

DeriNITION 2.3 (Transition relation for Par). Let — < Parx A X Par be the
smallest relation (writing p —a - p' for (p, a, p') € -) satisfying:

(1) (@)—a—(E), (a;s)—a-~(s),

(2) if{s)—a~p, then (new (s))—a-p,

(3) if{s, t)—a—p, then (new (s); t)—a - p,

(4) if (sy; (525 53)) —a > p, then ((s1; 52); 539 —a—>p,

(5) ifp—a-p,then p"m—a—-»p"mand v"p—a-a"p/,
(6) ifp—c—>p and w—¢- 7', then p"7w—1->p" "7,

forac A, ceC, s, t,s,,585,5,€Lr, and p, p’, m, 7’ € Par.

Intuitively, p — a - p' tells us that starting in the parallel statement p the elementary
action a can be performed, resulting in the parallel statement p’. Interesting in the
definition above are (3), (S), and (6). According to (3), the parallel statements (s, t)
and (new (s); t) can perform the same elementary actions. In other words, evaluating
(new (s); t) results in a parallel statement (s, ¢). Thus we see that the length of a parallel
statement increases when new (s) is evaluated. Operationally, this can be viewed as
the creation of a process that starts evaluating s, while statement ¢ is being executed
in parallel. According to (5), a composite parallel statement p" 7 can perform all the
elementary actions that can be performed by either p or = In (6) it is expressed that
if p can perform a communication action ¢ and = can perform a matching communica-
tion action & then p”r, the parallel statement composed of p and , can perform a 7
action, denoting a successful communication.

Example. (new (c); a; new (¢); b)—a—{c,new (¢); b)—b-{(c, ¢ E)—7->(E, E, E).

Before we give the definition of the operational semantics of parallel statements,
we introduce its semantic universe P.

DEFINITION 2.4 (Semantic universe P). Let A™ (=A*U A”) denote the set of
finite and infinite sequences or words of elements of A; let ¢ denote the empty word.
We extend this set by allowing as the last element of a finite sequence a special element
3, which denotes deadlock:

(we)Ay=A*UA* - {3jU A"
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Now we define (p, ge)P = 2,.(A7), the set of all non-empty and closed subsets of
AY. Let d denote the usual metric on A; (see the definitionin I.1.1). We take dp = (d) ,,
the Hausdorff metric induced by d, as a metric on P. According to Proposition 1.7, we
have that (P, dp) is a complete metric space.
DEFINITION 2.5 (Operational semantics 0). Let 0 =Fixed Point (®), where
& : (Par- P)- (Par- P) is given, for F € Par- P, and p € Par, by
{e} if p=(E,---,E),
®(F)(p)=13{8} ifVaVp' [p—a-p'=aecClrp#(E, -, E),
U{a-F(p'):p—a->p'rna&C} otherwise.

It is straightforward to show that @ is a contraction and thus has a unique fixed

point.
Note that an alternative equivalent definition of O could be given in terms of
transition sequences, by putting, for instance, a word a, - - - a, in Of p] if and only if

there exists a sequence
p—a,>p—ay>- - —a,>p,=(E -, E).

Since our language does not contain any constructs for recursion, we need not
be able to describe infinite behavior. Therefore, it is not really necessary to define 0
using a contraction on a complete metric space. It would have been sufficient to take
P as an ordinary set without any metric, and define @ with an easy induction on the
structure of statements. Our motivation for nevertheless exploiting metric structures
here is given by the fact that in the next section we will deal with recursion and infinite
behavior. There the use of some mathematical structure that can handle these, such
as complete metric spaces, is obligatory. Our use of complete metric spaces at this
stage can be seen as part of the introductory function of this section.

The operational semantics 0 can be best explained by giving a few examples.

Examples.

Oa)]=a- O(E)] = a-{e}={a},

Ol(new (a))] ={a},  Ole)]={a},

O, l={r},  Ol{a; b)]=a- O[(b)] = {ab},

Ol(new (a); b)) ={a- OI(E, b)]}, b-{0[(a, E)]I} ={ab, ba}.

Note that a single communication {c), without a matching communication ¢ in parallel,
creates a deadlock.

Such an operational semantics is nice, because it is intuitively very clear. However,
it is not compositional with respect to the binary syntactic operators ; and ||. For
instance, there is no semantic operator j: P X P— P, corresponding to ;, such that for
all s and ¢

O[(s ; 0] = O[] 5 O[]

This can be easily seen in the following argument. Suppose there is such an operator
7. Then

Ol{new (a); b)] = O[(new (a))] ; O[(b)]
=[since O(new (a))] = O[(a)]]
Ola)] ; OL(b)]
=0[(a; b)],
which yields a contradiction, as can be seen from the examples above.
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The denotational semantics to be defined in a moment has the property that it is
compositional with respect to the syntactic operators in L.

First, we define a suitable semantic universe.

DEFINITION 2.6 (Semantic universe P). We define a complete metric space

(p,q€)P by P=2,.(A%),
the set of nonempty and closed subsets of A™. Let d be the usual metric on A™; we
define dp = (d)H.

The only difference between P and P is that the latter does not contain finite
sequences ending in 4.

DerFINITION 2.7 (Denotational semantics 2). Let 9:Lr~> Cont-> P, where
Cont = P denotes the set of continuations, be given by

Dlal(p)=a-p,  D[ENp)=p,

Dlnew (s)](p) =p | 2Isl({e}),

D[s ; tl(p) = 2[s1(2[:1(p)),
with ||: Px P> P as defined below.

A continuation p e Cont denotes the semantics of the statement to be executed
after the one to which @ is applied. The meaning of a new-construct new (s) with
continuation p is determined as follows. The meaning of s is computed with the empty
continuation {e}, which indicates that after s nothing remains to be done. Since s is
to be executed in parallel with everything that follows, the result is composed in parallel
with p, which indicates the remainder of the program after s.

DEFINITION 2.8 (Parallel composition ||). Let ||: Px P - P be such that it satisfies,
for p,qe P,

plla=plLaUqlpUplg,
where

pllg=U{a" (pa |l @): pa #DtU{g: e€p},
pla=U{r (p.| q): p. # D # g}
with p, = {w: a- we p}, the set containing all the postfixes of a in p.

The above definition is self-referential and needs some justification. Formally, we
can define || as the fixed point of a contraction ¥: (P x P- P)- (P x P- P) given, for
fePxP- P, by

Y(f)pa)=plaYalpUplsa
where
pllra=U{a" f(pa, q): pa*StU{g: 2€p},
plra=U{T" (f(pe, )t pe * D # 4s}.

Note that & is compositional with respect to “;”. The corresponding semz.mtic
operator ;: ((P— P)x (P~ P))-> (P~ P) is not expressed explicitly in the definition
of 9. For completeness sake, we give its definition. We have, for f,ge P—> P,

fig=xp-flg(p))

2.1. Semantic equivalence of O and @. After having defined 0 and @ for Par and
L+, we next discuss the relationship between the two semantics. We shall compare 0
and 9 by relating both to an intermediate semantics 0': Par - P, given in the following
definition.
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DerFINITION 2.9 (Intermediate semantics 0'). Let 0'= Fixed point ('), where
@': (Par— P)- (Par- P) is given, for F e Par— P and p € Par, by

{e} ifp=(E - ,E),

®'(F)(p)= {U {a- F(p'):p—a~p'} otherwise.

Note that in @', as opposed to ®, single-sided communication steps ae C are
allowed. The difference between @ and 0’ can be illustrated by giving a few examples:

ool ={s}, Ol A ={r}
0L ={c}, OUcal={céc,}.

The relationship between 0 and 0" will be expressed using the following abstraction
operation.

DEerFINITION 2.10 (Abstraction operator «). We define an abstraction operator
a:P- P by

_{{6} if Va[p, # @=>ae C],
a(p)= U{a - (a(pa)):ag Cap, #D}U{e: ee p} otherwise,

with p, as in Definition 2.8. (For a justification of this self-referential definition see
the remark following Definition 2.8.)

The definition of a can be understood as follows. If all the words we p begin
with a communication action a € C, we have operationally a deadlock, since no single
communication action is allowed. Therefore, we then have that a( p) = {3}. In the last
case, a(p) contains all the words in p that begin with a noncommunication action
a e A\ C, with a recursively applied to p,, the set of postfixes of a; additionally, a(p)
contains ¢ if e € p.

The following theorem can be proved straightforwardly.

THEOREM 2.11. For all F€ Par~ P[®(a° F)=a o ®'(F)].

Since @ and @' are contractions and thus have unique fixed points, it follows that
we have Corollary 2.12.

COROLLARY 2.12. O0=a 0"

Proof. We have that a o 0'=a o ®'(0')=P(a ° 0'). Thus both a° 0’ and O are
fixed points of @, which implies that they are equal.

The relationship between 0" and & can be elegantly expressed using the following
mapping.

DerFINITION 2.13. We define ~:(Ly- Cont— P)— (Par- P) as follows. We
denote, for Fe L;- Cont- P, ~(F) by F and put

F=xpePar- (F(s)({e}) | - - | F(sa){e}),

with p=(s;,* "+, s,).

A simple consequence, using the associativity of |, of this definition is F(p't)=
F( o) | F(7). If the function F takes a parallel statement (s,, - - -, 5,) as an argument,
then the F values of all the substatements s; supplied with the empty continuation {¢}
are computed and next composed in parallel.

Now we can prove that @ 9. Itis a corollary of the following theorem.

THEOREM 2.14. (D) =

Proof. The proof uses mductlon on the structure of parallel statements. We treat
one typical case, leaving the other ones to the reader. Consider p"mr € Par and suppose
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P 74‘(5,1 -, Eyand @ #(E,- - E). Suppose we already know that '(5)(p) = 5 ( p)
and Q(Z)(m) = D(). We show that &(F)(p"m) = G(p"m).
QD) p'm)=U{a D(p):p'm—a-p’}

= [definition of - (2.3(5) and (6))]
Ula-9(p"m):p-a-ptUU{a - G(p a): m—a- '}
UU{r-2(p"7):p=—cop' nm—i- =}

= [definition ~]
Uta-(2(p") | S(m)): p-a—p'}
UU{a-(9(p) | 2(7)): m—a> '}
UU{r(D(p) | D(x):p—c>p' nm—c )

= [definitions | and |]
(Ufa - 9(p):p—a-p}| G(m)
UU{a: @("): m~a>m} 9(p))
UU{e G(p): p=c=p}|U{e G(n): m=C>a'})

= (@(D)(p) L D(m) U(@(F)(m) ()
U(@"(2)(p) | ¥(D)(m))

= [induction]
(B(P)LD(m)U(B(mLE(p)U(D(p)| D(m)))

=%(p) || @(m)

=g (p" ). O

COROLLARY 2.15. 0'= .

Combining Corollaries 2.12 and 2.15 now yields the main theorem of this section.

MAIN THEOREM 2.16. O=a ° J.

CoRrROLLARY 2.17. For all se L+[0[(s)] = a(D][s]({e}))].

.3. The language POOL. In this paper, we compare different semantic models of
a language that we call POOL: Parallel Object-Oriented Language. It is a simplified
version of a language called POOL-T, which is defined in [Am85]. (For an account
of the design considerations for POOL-T, see [Am86] and [Am87].) The simplification
is twofold. First, we omitted certain language constructs from POOL-T (such as the
select statement and the method call) as well as some of the protection mechanisms
offered by the definition of classes (such as different classes having different instances
of variables and method definitions). We have done this in order to make life somewhat
easier: the semantic definitions are shorter and so are the proofs of the theorems. We
feel justified in doing so, since it is straightforward to extend the approach of this
paper to the full language. Second, we give an abstract syntactic description of POOL,
which is a simplified version of the formal description of POOL-T.

A POOL program describes the behavior of a whole system in terms of its
constituents, objects. Objects contain some internal data, and some procedures that
act on these data (these are called methods in the object-oriented jargon). Objects are
entities of a dynamic nature: they can be created dynamically, their internal data can
be modified, and they have an internal activity of their own. At the same time they
are units of protection: the internal data of one object are not directly accessible for
other objects.
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An object uses variables (more specifically: instance variables) to store its internal
data. Each variable can contain the name of an object (another object, or, possibly,
the object under consideration itself). An assignment to a variable can make it refer
to an object different from the object referred to before. The variables of one object
cannot be accessed directly by other objects. They can only be read and changed by
the object itself.

Objects can interact by sending messages to each other. A message is a request
for the receiver to execute a certain method. Messages are sent and received explicitly.
In sending a message, the sender mentions the destination object, the method to be
executed, and possibly a parameter (which is again an object name) to be passed to
this method. After this, its activity is suspended. The receiver can specify the set of
methods that will be accepted, but it can place no restrictions on the identity of the
sender or on the parameters of messages. If a message arrives specifying an appropriate
method, the method is executed with the parameters contained in the message. Upon
termination, this method delivers a result (an object name), which is returned to the
sender of the message. The latter then resumes its own execution. Note that this form
of communication strongly resembles the rendez-vous mechanism of Ada [ANSI83].

A method can accesss the variables of the object by which it is executed (the
receiver of a message). Furthermore, it has a formal parameter, which is initialized to
the actual parameter specified in the message.

When an object is created, a local activity is started: the object’s body. When
several objects have been created, their bodies execute in parallel. This is the way
parallelism is introduced into the language. Synchronization and communication takes
place by sending messages, as described above.

Objects are grouped into classes. All objects in one class (the instances of that
class) execute the same body. In creating an object, only its desired class must be
specified. In this way a class serves as a blueprint for the creation of its instances.

At this point, it might be useful to emphasize the distinction between an object
and its name. Objects are intuitive entities as described above. In this paper, there will
appear no mathematical construction that directly models a single object with all its
dynamic properties (although it would be interesting to see a semantics that does this).
Object names, on the other hand, are modeled explicitly as elements of some abstract
set Obj. Object names are only references to objects. On its own, an object name gives
little information about the object it refers to. In fact, object names are just sufficient
to distinguish the individual objects from each other. Note that variables and parameters
contain object names, and that expressions result in object names, not objects. If in
the sequel we speak, for example, of “‘the object «,” we hope the reader will understand
that the object with name o is meant.

Now we describe the (abstract) syntax of the language POOL. We assume that
the following sets of syntactic elements are given:

(xe)IVar (instance variables),
(ue)TVar (temporary variables),
(C €)CName (class names),
(me)MName (method names).

DeFinITION 3.1 (Expressions, statements, units). We define the set of expressions
(e€)Lg and the set of statements (s€)Lg by

e=x|u|e!m(e)|new (C)|s;e]lself,
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si=x<e|u<e|answer m|s,;s,|if e then s, else s, fi| do e then s od.
The set (U €)Unit of units is defined by
U = <(Cl¢:sla. * .1Cn¢sn)’ (ml<=<ul,el>,.. .’mk¢<uk’ e’\)))’

We write C<=se U if there exists an i such that C; = C and s; =s. Similarly, we write
m&{u, eye U.

An instance variable or a temporary variable used as an expression will yield as
its value the object name that is currently stored in that variable.

The next kind of expression is a send expression. Here, e, is the destination object,
to which the message will be sent, m is the method to be invoked, and e, is
the parameter. When a send expression is evaluated, the destination expression
and the parameter expression are evaluated successively. Next, the message is sent to
the destination object. When this object answers the message, the corresponding method
is executed, that is, the formal parameter is initialized to the name of the object in the
message, and the expression in the method definition is evaluated. The value that
results from this evaluation is sent back to the sender of the message and this will be
the value of the send expression.

A new-expression indicates that a new object is to be created, an instance of the
indicated class. Its body starts executing in parallel with all other objects in the system.
The result of the new-expression is (the name of) this newly created object.

An expression may also be preceded by a statement. In this case the statement is
executed before the expression is evaluated.

The expression self always results in the name of the object that is executing this
expression.

The first two kinds of statements are assignments, to an instance variable and to
a temporary variable, respectively. An assignment is executed by first evaluating the
expression on the right, and then making the variable on the left refer to the resulting
object.

An answer statement indicates that a message is to be answered. The object
executing the answer statement waits until a message arrives with a method name that
is specified by the answer statement. Then it executes the method (after initializing
the formal parameter). The result of the method is sent back to the sender of the
message, and the answer statement terminates.

Sequential composition, conditionals, and loops have the usual meaning.

Units are the programs of POOL. A unit consists of a number of definitions of
class bodies and methods. If a unit is to be executed, a single new instance of the last
class defined in the unit is created and execution of its body is started. This object has
the task to start the whole system, by creating new objects and putting them to work.

The relationship between POOL and POOL-T is the following: POOL is obtained
from POOL-T via two successive simplifications. First, certain language constructs
from POOL-T are omitted (such as the select statement) as well as some of the protection
mechanisms in POOL-T, which are offered by the definition of classes (such as different
classes having different variables and method definitions). Second, some syntactical
simplifications are performed and some context information is omitted (POOL-T is a
statically typed language, whereas POOL is not). The reason for making the first
simplification is simply lack of space, to which should be added the consideration that
it would be straightforward to extend our results to the full language. The sole reason
for making the second simplification is that POOL-T is a practical programming
language, for which readability, among others, is more important than syntactic
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simplicity. Therefore, it is convenient to take a simplified language, POOL, as the
semantic core of POOL-T.

If one compares the version of POOL described in this paper with the one given
in [ABKR86(a)] and [ABKR86(b)], some minor differences can be observed. (For
example, in the send expression of Definition 3.1 above only one parameter can be
specified whereas in the definitions of the papers mentioned an arbitrary number of
parameters is allowed.) However, it can easily be seen that it is straightforward to
adapt the definitions and proofs given in this paper such that they apply to the version
of POOL occurring in [ABKR86(a)] and [ABKR86(b)].

4. An operational semantics for POOL. In this section we give the definition of
an operational semantics for POOL, which is a modified version of the one given in
[ABKRS6(a)]. (At the end of this section, we shall compare both models in some
detail.) It is based on a transition relation and will be defined as the fixed point of a
suitable contraction. For this purpose, we introduce a number of syntactic and semantic
notions.

First of all, we introduce the set of objects.

DEFINITION 4.1 (Objects). We assume given a set AObj of names for active objects
together with a function

v: P (AObj) > AObj

such that »(X) £ X, for every finite X <€ AObj. Given a set X of object names, the
function » yields a new name not in X.
Further, we define

Obj = AObj U SObj,

where SObj is the set of so-called standard objects, to be introduced in Appendix IIL
A possible example of such a set AObj and function v could be obtained by setting

AObj =N, v(X)=max{n:ne X}+1.

In POOL, a few standard classes, the instances of which are called standard
objects, are predefined; examples are the classes of Booleans and integers. The semantic
treatment of these standard objects is somewhat different from the way the active
objects (which are created during the execution of a POOL program) are treated.
Because we want to formulate our semantic models as concisely as possible in order
to focus on the correctness proof, the standard objects are treated in Appendix III.

Next, it is convenient to extend the sets Ly of expressions and Lg of statements
by adding some auxiliary syntactic constructs.

DEFINITION 4.2 (L, Ls). Let (e€ )Ly and (s€)Lg be defined by

e=x|ule!m(e,)|new(C)|s;e|self| a|(e, ¢),
su=x<e|u<e|answer m|s, ;s,|if e then s, else s, fi|do e then s od
| release (B, s) | (e, )

with @, B€ AObj, ¢ € Lpg, and ¢ € Lps. Here the sets of parameterized expressions
(¢ €)Lpe and parameterized statements (Y €) Lps are given by
& = Au- e, Y= Au- s,

with the restriction that u does not occur at the left-hand side of an assignment in e
or s. For a € Obj, ¢ =Au- e, and ¢ = Au- 5, we shall use ¢(a) and ¢ (a) to denote the
expression and the statement obtained by syntactically substituting a for all free
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occurrences of u in ¢ and ¢, respectively. The restriction just mentioned ensures that
the result of this substitution again is a well-formed expression or statement.

Let us explain the new syntactic constructs. In addition to what we already had
in Lg, an expression e € Lg. can be an active object « or a pair (e, ¢) of an expression
e and a parameterized expression ¢. The latter will be executed as follows: First the
expression e is evaluated, then the result B8 is substituted in ¢ and ¢(B) is executed.
As new statements we have release statements release (8, s) and parameterized state-
ments (e, ¢ ). If the statement release (8, s) is executed, the active object 8 will start
executing the statement s (in parallel to the objects that are already executing). The
release statement will be used in the description of the communication between two
objects (see Definition 4.8 below). The interpretation of (e, ¢) is similar to that of (e, ¢).

DEeriNITION 4.3 (Empty statement). The set Lg., as given in the definition above,
is extended with a special element E, denoting the empty statement. This extended set
is again called Lg . Note that we do not have elements like s ; E or do e then E od in
Lg . (There is, however, one exception: we do allow E in if e then s else E fi, which
is needed in Definition 4.8(A7) below.)

DeFINITION 4.4 (States). The set of states (o €)X is defined by

S = (AObj > IVar - Obj) x (AObj > TVar - Obj) x P;,( AObj).

The three components of o are denoted by (o, 0., 03). The first and the second
component of a state store the values of the instance variables and the temporary
variables of each active object. The third component contains the object names currently
in use. We need it in order to give unique names to newly created objects.

We shall use the following variant notation. By o{B/a, x} (with x € IVar) we shall
denote the state o’ that is as o but for the value of o{(a)(x), which is B. Similarly,
we denote by o{B/a, u} (with ue TVar) the state o’ that is as o but for the value of
oi(a)(u), which is B.

DeriNniTION 4.5 (Labelled statements). The set of labelled statements ((a,
s)€)LStat is given by

LStat = AObj X L.

A labelled statement (e, s) should be interpreted as a statement s that will be
executed by the active object a.

Sometimes, we also need labelled parameterized statements. Therefore, we extend
LStar:

LStat' = LStat U (AObj x Lps).

A pair (a, ) indicates that the active object a will execute the statement ¢ as soon
as it receives a value that it can supply to ¢ as an argument.
Before we can give the definition of a transition relation for POOL, we first have
to explain which configurations and transition labels we are going to use.
DeFINITION 4.6 (Configurations). The set of configurations ( p € ) Conf is given by

Conf = P;,(LStat) X X.
We also introduce
Conf'= P;,(LStat’) x 2.

Typical elements of Conf and Conf’ will also be indicated by (X, o) and (Y, o).
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We shall consider only configurations (X, o) that are consistent in the following
sense. For X ={(a, 1), -+, (ax, )}, we call (X, o) consistent if the following condi-
tions are satisfied:

Vije{l,--+,k} [i#j=>a#qo] and {a, ' ,o}<co;.

Whenever we introduce a configuration (X, o), it will be tacitly assumed that it is
consistent.

A configuration (X, o), consisting of a finite set X of labelled statements and a
state o, represents a “‘snapshot’ of the execution of a POOL program. It shows what
objects are active and what statements they are executing; furthermore, it contains a
state o, in which the values of the variables of the active objects as well as the set of
object names currently in use are stored.

DerINITION 4.7 (Transition labels). The set of transition labels (A €)A is given by

A={r}U{(a, Bi!m(B,)): &, B, € AObj, B.€ Obj}U{(B7m): B € AObj}.

These labels will be used in the definition of the transition relation below and are
to be interpreted as follows. The label = indicates a so-called computation step. Next,
(a, B,!m(B,)) indicates that object @ sends a message to object B, requesting the
execution of the method m with parameter $,. Finally, (8?m) indicates that the object
B is willing to answer a message specifying the method m.

Now we are ready to define a transition relation for POOL.

DEFINITION 4.8 (Transition relation). Let U € Unit. We define a labelled transition
relation

—U~- < Confx AxConf'.
Triples {p;, A, p,) € —U - will be called transitions and are denoted by
P~ U) A= P2

Such a transition reflects a possible execution step of type A of the configuration p,,
yielding a new configuration p,. The relation —U - is defined as the smallest relation
satisfying the following properties.

AXIOMS:

(A1) ({(a, (x, )}, o> =U, 7> {(a, (o1(a)(x), ¥))}, o).
(A2)  ({la, (u, )}, o) = U, 7> ({(a, (oa(a)(u), ¥))}, o).
(A3) e, (BiIm(Ba), y N}, o) = U, (@, (B1Im(B1))) = {(a, ¥)}, o).

(Ad)  ({(e, (new (C), ¥))}, o) — U, 7> {(a, (B, ¥)), (B, 5¢)}, o), where
Cescel, B=v(oy),0'=(0,,0,, o3 U{B}.

(AS) {la,z<B),oy—U, 7> {(q, E)},o{B/a, z}) for ze IVarU TVar.
(A6) {(e, answer m)}, o) — U, (e ?m)->{{(a, E)}, o).

(A7) {{(a,do ethens od)}, oy~ U, 7>
({(e, if e then (s; do e then s od) else E fi)}, o).

RULES:

(R1) If ({(a, (e, Au-z<u))}, o)~ U, A= p,
then ({(a,z<«e)}, o)~ U, A > p,forae IVarU TVar.

(R2)  If {(e, 5)}, 0)— U, A > {{(a, s} U X, o).
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then ({(a, 55 )}, o)~ U, A > {{(e,s"; 1)} U X, o)

(read t instead of s'; tif s'=F).

if ({(e, 5)}, )= U, A >{(a, IU X, o),

then ({(a, s; )}, o) = U, A > {(a, Au- (¢(u) ; )}U X, o).

(R3) If {(a, s)},0)—U,A>p,then{{(a,if B then s, else s, fi)},o)— U, A—>p,

where
. {s, if =1,
! Sz if B =jf

(R4)  If{{(«, 1), (B, s)}, 0)— U, A > p, then ({(e, release (B, s) ; t},0)—U, A >p
(read release (3, s) instead of release (B, s) ; t if t=E).

(R5) If {(a, (e, Au- if u then s, else s, fi))}, o)— U, A > p,
then ({(a, if e then s, else s> fi)}, o) — U, A > p.
(Here s, is allowed to be E.)

(R6) I ({(a, ((er, Auy - (€3, Aus - uyIm(uy))), ¥))}, o) = U, A > p,
then <{(C¥, (el!m(el)’ "II))}, 0')“ U) A p-

(R7) If {(a, 55 (e, )}, 0) = U, A > p, then {(e, (s 5 &, ¥))}, )= U, A > p.

(R8)  If ({(a, (& Au- (& (u), )}, o) = U, A = p,
then <{(a’ ((e’ ¢)3 (//))}3 (T)“ Ua A‘ —)p

(R9) If {(a, y(BN}, o) = U, A > p, then ({(a, (B, y))}, o) — U, A - p, for B € Obj.
If (e, (@)}, oy— U, A = p, then {{(«, (self, )}, o) — U, A = p.

(R10) If(X,0)—UA~>(X', 0", then{(XUY,o)-UAr-»(X'UY, o).

(R11)  If(X,0)—-U, (e, B!'m(B,))=>{(a,y)U X', o) and
(Y,oy=U, B,"m~>{{(By,s)}U Y, o),
then (XU Y,o)—U, 7>
{(B1, (e, At (U, < 02(B1) (Uyn); velease (@, y(u)) 5 INIUX'U Y, o),
where o' =0{B,/B,, U}, and m<&(u,, e, U

(End of definition.)

The general scheme for the evaluation of an expression is very similar to the
approach taken in [AB88]. Expressions always occur in the context of a (possibly
parameterized) statement, such as x « e. A statement containing e as a subexpression
is transformed into a pair (e, ) of the expression e and a parameterized statement ¢
by application of one of the rules. (In our example, x < ¢ becomes (x, Au - x < u) by
an application of (R1).) Then e is evaluated, using the axioms and rules, and results
in some value B8’ Obj. (Applying (A1) transforms (x, Au - x < u) of our example into
(B', Au- x < u), for some B’c Obj.) Next, an application of (R9) will put the resulting
object B’ back into the original context ¢ (yielding x < B’ in our example). Finally,
the statement (B’) is further evaluated by using the axioms and the rules. (The
evaluation of x < B’ results, by using (A6), in a transformation of the state.)

Let us briefly explain some of the axioms and rules above.

In (A4) a new object is created. Its name B is obtained by applying the function
v to the set o of the active object names currently in use and is delivered as the result
of the evaluation of new (C). The body s¢ of class C, defined in the unit U, is going
to be evaluated by 8. Note that the state o is changed by extending o with 8.

In (R8), the evaluation of an expression pair (e, ¢), where ¢ is a parameterized
expression, in the context of a parameterized statement ¢ is reduced to the evaluation
of the expression e in the context of the adapted parameterized statement Au - (¢ (u), ).



356 J. J. M. M. RUTTEN

Rule (R11) describes the communication rendez-vous of POOL. If the object «
is sending a message to object B, requesting the execution of the method m and if
the object B, is willing to answer such a message, then the following happens: The
object B, starts executing the expression e,,, which corresponds to the definition of
the method m in U, while its state o(8,) is changed by setting u,,, the formal parameter
belonging to m, to 8., the parameter sent by the object @ to 3,. After the execution
of e,, the object B, continues by executing u,, « o-(8,)(u,,), which restores the old
value of u,, followed by the statement release («, ¥s(u));s. The execution of
release (e, ¢(u)) will reactivate the object o, which starts executing ¢ (u), the statement
obtained by substituting the result u of the execution of e,, into . Note that during
the execution of e,, the object « is nonactive, as can be seen from the fact that o does
not occur as the name of any labelled statement in the configuration resulting from
this transition. Finally, the object B8, proceeds with the execution of the statement s,
which is the remainder of its body.

(Note that we have not incorporated any transitions for the standard objects; this
is done in Appendix III.)

Now we are ready for the definition of the operational semantics of POOL. It will
use the following semantic universe.

DEeFINITION 4.9 (Semantic universe P). Let (we)E7=3*UZ*UX* - {9}, the set
of streams. We define

(p’ q E )P = 29 @ncompacl(zgo)’

where P,.ompae(23) is the set of all nonempty compact subsets of =3, and the symbol

d denotes deadlock. The set P is a complete metric space when supplied with the usual
metric (see Definition 1.6).

The elements of P will be used to represent the operational meanings of statements
and units. For a given state o€ 2, the set p(o) contains streams we 25, which are
sequences of states representing possible computations. They can be of one of three
forms. If we £*, it stands for a finite normally terminating computation. If we 3¢, it
represents an infinite computation. Finally, if w e £* - {3}, it reflects a finite abnormally
terminating computation, which is indicated by the symbol 3 for deadlock.

DeriNITION 4.10 (Operational semantics for POOL). We define the operational
semantics of finite subsets of labelled statements. Let, for a unit U € Unit, the function

@y : (Pa(LStat) > P)-> (Pp,(LStat) > P)
be given, for Fe #;,(LStat) > P and X € P;,(LStat) by

{e} ifVaVs[(a,s)e X=>s=E],
Qy(F)(X)=MAo-{{8} if AX,0)~U, 7> andJa Is[s#E a (e, s) € X1,
U{e" F(X)(0"): (X, 0)= U, 7> (X", o)} otherwise,

where
(X,0)~U,7>=3X"30'[(X,0)— U, 7> (X", 0].
Now the operational semantics Oy, : P, (LStat) > P is given as
Oy = Fixed point ().

It is straightforward to prove that @, is a contraction and thus has a unique fixed
point.
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The definition of @, is very similar to the definition of ® in the previous section
(Definition 2.5). If, for a given X € %;,(LStat) and o € 2, we have that (X, o)— U, 7>,
then no computation steps, which are indicated by 7, are possible from (X, o). The
transitions that are possible are of the form

(X, 00~ U, (e, By!m(B2))>p or (X, 0)—U, (a?m)->p’,

denoting a.ttempts of a single object a to perform a communication action without
any matching object being present. This is an instance of deadlock and therefore we
here have that Oy [X](o) ={9}. On the other hand, for every transition

(X, 0)= U, 7>(X", o)

the set Oy [X](o) includes the set o' - 0, [X](o”), in which the transformed state o'
is concatenated with the operational meaning of X"’ in state o".

Finally, we can give the operational semantics of a unit.

DEFINITION 4.11 (Operational semantics of a unit). Let[: - -Jo: Unit - P be given,
for a unit U={(---, C,&s,), ), by

[Ule = 0ul{(»(D), s.)H.

The execution of a unit U={(- - -, C,&s,), - - *) consists of the creation of an object
of class C, and the execution of its body. Its name is given by »({J), the name of the
first object.

Comparison with [ABKR86(a)]. In [ABKRS86(a)], an operational semantics for
POOL is defined which differs from O, in a number of respects. There, a transition
relation without labels is used whereas we have a labelled transition relation here;
further, in [ABKR86(a)] communication is modelled by means of a so-called wait
statement as opposed to the release statement we use here; also our use of parameterized
expressions and statements is new. All these differences can be seen as minor variations
of the semantic definitions and are motivated by the main goal of this paper, which
is to relate the operational semantics with the denotational one. There is one major
difference, however, which we shall treat in some detail: In Definition 4.10 of this
paper, Oy, is given as the fixed point of a contraction, whereas in [ABKR86(a)] the
operational semantics is defined in terms of finite and infinite sequences of transitions.
In order to show the equivalence of both approaches, we now define an operational
semantics 0% in the style of [ABKR86(a)], for which we next shall prove that it
equals Oy,.

DEFINITION 4.12 (Alternative operational semantics). Let, for a U € Unit, the
function

0% : Ps.(LStat) > P
be given as follows. Let X € %,(LStat) and o € 2. We put for a word weX;:
we 05 X](o)

if and only if one of the following conditions is satisfied:
(1) w=o, - - - o, and there exist X;, - - -, X,, such that

(X, 00— U, 7>(X,,op-U7->---=U, r>(X,, 0, and VY(a,s)eX,[s=E].
(2) w=0,0," - - and there exist X;, X,, - - - such that

(X, 0'>_UaT“’<X170'x>’U,T'><X2,Uz>" UT->--+.
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(3) w=o0,"+- 0,9 and there exist X,, - - -, X, such that
(X,U>_U,T_><Xlaal>_u7'>""'IJ,T_><anO—n> and
a,s)eX,[s#E] and —(X,,o,)—U, 7.

It is not straightforward that the sets OF[X](o) are in P, that is, that they are
compact; we prove this fact in the following lemma.

LemMma 4.13 (Compactness of 0%;). For every X € P;,,(LStat) and o€ 3: OF[X](o)
is compact.

Proof. Let (w;); be a sequence of words in 0F[X](o) (€X7), say

1
W, =0 oo -

We show that (w;); has a converging subsequence with its limit in OF[X](o). Assume
for simplicity that all words w; are infinite. Since w; e 0F[X](o), for every i, there
exist infinite transition sequences such that

(X, 0)=> (X}, 00)>(X], oD)>" -
(omitting the labels U, 7). From the definition of - it follows that the set
(X', 00 (X, o) > (X", o)}

is finite. (This follows from the observation that according to the axioms only a finite
number of transitions is possible from an arbitrary configuration; this property is
preserved by all the rules.) Thus there exists a pair (X,, o,) such that for infinitely
many i’s:

<X11’ U:>=(Xl’ U])‘
Let f,:N->N be a monotonic function with, for all i,
(le'm, U}(i)) =(Xy, o).

" Next we proceed with the subsequence (Wr,(i)): of (w;); and repeat the above argument,
now with respect to the set

(X', 0): (X, o) (X", o)}

Continuing in this way, we find a sequence of monotonic functions (f;)«, defining a

sequence of subsequences of (w;);, and a sequence of configurations ({X,, 03.))x such
that

VijVigk[U}'k(j)=0,-] and (X, 0)=>(X,,0)> (X5, 00>+

and, moreover, such that the sequence (wy,, (;)); is a subsequence of the sequence of
(Wri));- Now we define

g(i)=f£i(i).
Then we have
lim wy ;) = 00003 -+ -
i»00
Thus we have constructed a converging subsequence of (w;); with its limit in 0% Ul(o).
(In case the words w; are not all infinite a similar argument can be given.)

1t is not difficult to show that 0, = 0F.
THEOREM 4.14. 0y, = 0%
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Proof, We prove that 0% is also a fixed point of @, from which the equality
follows. Let X € 2;,(LStat) such that there exist (o, s)e X [s# E], let ¢ €X and let
weZy. If w=0 then

we @y (05)(X) (o) we 03[ X](0).
Now suppose w # 3. We have
we O0F[X(o)3o'eE 3IX'e Py, (LStat) Iw'eXy
(X, o) > (X", aYaw=0"-wrw'e0F[X (o]
& [definition @]
wedy(07)(X)(0).
So we see that 0F, =@, (0F).

5. A denotational semantics for POOL. The denotational semantics that is defined
in this section was already presented (in a slightly different form) in [ABKR86(b)].
(For a comparison of the two models we refer the reader to the end of this section.)

Our denotational model has a so-called domain (a solution of a reflexive domain
equation) for its semantic universe. In [BZ82] it was first described how to solve these
equations in a metric setting. Then, in [AR88], this approach was generalized in order
to deal with equations of the following form: P=---P---- a case that was not
covered by [BZ82]. For a quick overview of the main results of [AR88], the reader
might want to read § 2 of [ABKR86(b)].

Further, our model is based on the use of continuations. For an extensive treatment
of continuations and expression continuations, which we shall use as well, we refer
to [Go79].

We start with the definition of a domain P, the elements of which we shall call
processes from now on.

DEFINITION 5.1 (Semantic process domain P). Let (p, g€)P be a complete ultra
metric space satisfying the following reflexive domain equation:

P={po}Uid);»(2 > Peompaci(Stepp)),
where (1, p €)Stepp is
Stepp = Compp U Sendp U Answerp,
with
Compp =2 %P,
Sendp = Obj x MName x Obj x (Obj - P) X P,
Answerp = Obj x MName x (Obj > (Obj > P) > ' P).

(The sets { po}, £, Obj, and MName become complete ultra-metric spaces by supplying
them with the discrete metric.)

In [ARS8], it is described how to find for such an equation a solution that is
unique up to isomorphy. Let us try to explain intuitively the intended interpretation
of the domain P. First, we observe that in the equation above the subexpression id,,,
(defined in Appendix I, 1.6(e)) is necessary only to guarantee that the equation is
solvable by defining a contracting functor on %, the category of complete metric spaces.
For a more operational understanding of the equation, for example, it does not matter.
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A process p € P is either p, or a function from X to P compac:(Stepp), the set of all
compact subsets of Steps. The process po is the terminated process. For p # p,, the
process p has the choice, depending on the current state o, among the steps in the set
p(o). If p(o) =@, then no further action is possible, which is interpreted as abnormal
termination. For p(o) # &, each step 7€ p(o) consists of some action (for instance,
a change of the state o or an attempt at communication) and a resumption of this
action; that is to say, the remaining actions to be taken after this action. There are
three different types of steps 7 € Steps. _

First, a step may be an element of £ X P, say

7 =(c’, p’).
The only action is a change of state: ¢’ is the new state. Here the process p' is the
resumption, indicating the remaining actions process p can do. (When p’= p, no steps

can be taken after this step =.)
Second, 7 might be a send step, € Sends. In this case we have, say

17=<a5 m’ BSﬁP)’

with a € Obj, me MName, B € Obj, fe (Obj- P), and p € P. The action involved here
consists of an attempt at communication, in which a message is sent to the object «,
specifying the method m, together with the parameter . This is the interpretation of
the first three components «, m, and B. The fourth component f, called the dependent
resumption of this send step, indicates the steps that will be taken after the sender has
received the result of the message. These actions will depend on the result, which is
modelled by f being a function that yields a process when it is applied to an object
name (the result of the message). The last component p, called the independent
resumption of this send step, represents the steps to be taken after this send step that
need not wait for the result of the method execution.

Finally, 7 might be an element of Answers, say

m=(a, m, g)

with a € Obj, me MName, and g € (Obj - (Obj - P) - 'P). 1t is then called an answer
step. The first two components of m express that the object « is willing to accept a
message that specifies the method m. The last component g, the resumption of this
answer step, specifies what should happen when an appropriate message actually
arrives. The function g is then applied to the parameter in this message and to the
dependent resumption of the sender (specified in its corresponding send step). It then
delivers a process which is the resumption of the sender and the receiver together,
which is to be composed in parallel with the independent resumption of the send step.

We now define a semantic operator for the parallel composition (or merge) of two
processes, for which we shall use the symbol ||. It is auxiliary in the sense that it does
not correspond to a syntactic operator in the language POOL.

DEeFINITION 5.2 (Parallel composition). Let ||: Px P P be such that it satisfies
the following equation:

Pla=ro-((p()Le)U(q()Lp)U(p(o) |, q(a))),

for all p, g€ P\{po}, and such that p, || g =g | po=p,. Here, X| g and X |, Y are
defined by

X[ g={n]qmex},
Xl Y=U{m|,p:meX, peY},
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where ﬁ q is given by
@.p)la=¢’"pll o),
(a,m, B,f,p) | g=(a,m, B, f.p | @), and
(o, m, g) || g=Ca, m, AB- Ah- (g(B)(h) || q)),
and 7|, p by

{(o,g(B)S) I} if m=(a,m,B,f,p) and p=(a,m,g)
Tlep= or p=(a,m,B,f,p) and 7=(a,m,zg),
() otherwise.

We observe that this definition is self-referential, since the merge operator occurs
at the right-hand side of the definition. For a formal justification of this definition see
the appendix of [ABKRS86(b)], where the merge operator is given as the unique fixed
point of a contraction on Px P-'P.

Since we intend to model parallel composition by interleaving, the merge of two
processes p and q consists of three parts. The first part contains all possible first steps
of p followed by the parallel composition of their respective resumptions with g. The
second part contains similarly the first steps of ¢. The last part contains the communica-
tion steps that result from two matching communication steps taken simultaneously
by process p and q. For me Stepp the definition of = | g is straightforward. The
definition of 7 |, p is more involved. It is the empty set if 7 and p do not match. Now
suppose they do match, say = ={a, m, B, f, p) and p =(e, m, g). Then = is a send step,
denoting a request to object a to execute the method m, and p is an answer step,
denoting that the object a is willing to accept a message that requests the execution
of the method m. In 7 |, p, the state o remains unaltered. Since g, the third component
of p, represents the meaning of the execution of the method m, it needs the parameter
B that is specified by «. Moreover, g depends on the dependent resumption f of the
send step . This explains why both 8 and f are supplied’as arguments to the function
g. Now it can be seen that g(8)(f) || p represents the resumption of the sender and
the receiver together. (In order to get more insight into this definition it is advisable
to return to it after having seen the definition of the semantics of an answer statement.)

The merge operator is associative, which can easily be proved as follows. Define

e= sup {ds((pl @) llrpl(ql N}

p.g.,re P

Then, using the fact that the operator | satisfies the equation above, one can show
that £ =3 - &. Therefore ¢ =0, and || is associative.

Now we come to the definition of the semantics of expressions and statements.
We specify a pair of functions (@, Ps) of the following type:

Pg: Lg = AObj - Contg > 'P, Dg: Ls > AObj - Conts>'P
where
Contg = Obj» P and Conts=P.

Let s€ L, a € AObj, and p € P. The semantic value of the statement s is given by

Dslsl(a)(p).
The object name « represents the object that executes s. Second, the semantic value
of s depends on its so-called continuation p: the semantic value of everything that will
happen after the execution of s. The main advantage of the use of continuations is
that it enables us to describe the semantics of expressions in a concise and elegant way.



362 J. J. M. M. RUTTEN

The semantic value of an expression e € Lg, for an object « and an expression
continuation f e Contg, is given by

Dele](a)(f).

The evaluation of an expression e always results in a value (an element of Obj), on
which the continuation of such an expression generally depends. The function f, when
applied to the result 8 of e, will yield a process f(8) e P that is to be executed after
the evaluation of e.

Please note the difference between the notions of resumption and continuation. A
resumption is a part of a semantic step = € Steps, indicating the remaining steps to be
taken after the current one. A continuation, on the other hand, is an argument to a
semantic function. It may appear as a resumption in the result. A good example of
this is the definition of I:”s(xe— e) (in Definition 5.3(SI)) below.

DerINITION 5.3 (Semantics of expressions and statements). Let

Qe = Lg > AObj— Contg - 'P, Qs = Lg-> AObj-> Conts—'P.
For every unit U € Unit we define a pair of functions @, =(Dg, Ds) by
9Dy = Fixed point (¥),
where

Yy :(Qe X Qs) = (Qr X Qs)

is defined by induction on the-structure of L and Lg by the following clauses. For
F = (Fg, Fs) we denote ¥, (F) by 1:“=(I:"E, I:"S). Let p e Conts = P, fe Contz = Obj - P
and a € AObj. Then:

EXPRESSIONS:

(E1, instance variable)  Fg(x)(a)(f) = Ao - {0, floy(a)(x)))}.

The value of the instance variable x is looked up in the first component of the state
o supplied with the name a of the object that is evaluating the expression. The
continuation f is then applied to the resulting value.

(E2, temporary variable) ﬁE(u)(a)(f) =)Ao {{o, f(ox(a)(u)))}.

(E3, send expression)

Fe(eytm(e))(@)(f) = Fe(e)(@)(AB, - Fe(e)(@)(ABa- Ao~ {(By, m, Ba, £, P)}))-

The expressions e, and e, are evaluated successively. Their results correspond to the
formal parameters 8, and B, of their respective continuations. Finally, a send step is
performed. The object name B, refers to the object to which the message is sent; 38,
represents the parameter for the execution of the method m. Besides these values and
the method name m, the final step (B,, m, B, f, po) also contains the expression
continuation f of the send expression as the dependent resumption. If the attempt at
communication succeeds, this continuation will be supplied with the result of the
method execution. The independent resumption of this send step is initialized at p,.

(E4, new-expression)  Fi(new (C))(a)(f) =~ {0, f(B) || Fs(sc)(B)(po)},
where
- B=v(oy),

o'=(oy, 05, 0,U{B}), C&sqe U
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A new object of class C is created. It is called v(o): the function v supplied with the
set of all object names currently in use yields a name that is not yet being used. The
state o is changed by expanding the set o; with the new name B. The process
Fs(sc)(B)(po) is the meaning of the body of the new object 8 with p, as a nil
continuation. It is composed in parallel with f(8), the process resulting from the
application of the continuation f to B, the result of the evaluation of this new-expression.
We are able to perform this parallel composition because we know from f what should

happen after the evaluation of this new-expression, so here the use of continuations
is essential.

(ES, sequential composition)  Fg(s; e)(a)(f) = Fs(s)(a)(Fs(e)(a)(f)).

The continuation of s is the execution of e followed by f. Note that a semantic operator
for sequential composition is absent: the use of continuations has made it superfluous.

(E6, self) Fe(self)(a)(f) = f(a).

The continuation of f is supplied with the value of the expression self, that is, the
name of the object executing this expression. We use f(«) instead of AB - {{c, f(a))}
in this definition wishing to express that the value of self is immediately present: it
does not take a step to evaluate it.

STATEMENTS:

(S1, assignment to an instance variable)

Fy(s<e)(a)(p)=Fe(e)(a)(AB- Ao {{o’, p)}),

where o’ = o{B/a, x}. The expression e is evaluated and the result 8 is assigned
to x.

(S2, assignment to a temporary variable)
Es(u<e)(a)(p)=Fz(e)(@)(AB- Ao~ {(o’, p)}),
where o' =o{B/a, u}.
(S3, answer statement) ﬁs(answer m)(a)(p)=ro: {a, m, g.)},
where
g =AB- Af- A6 - {(0, Fg(en)(@)(AB- A& - {(&", f(B") || pYD)},
with
o' =G{B/a, un},
&' =G {0y (a)(un )/ @, U},
m<{u,,, e,y U.

The function g,, represents the execution of the method m followed by its continuation.
This function g, expects a parameter 3 and an expression continuation f, both to be
received from an object sending a message specifying the method m. The execution
of the method m consists of the evaluation of the expression e,,, which is used in the
definition of m, preceded by a state transformation in which the temporary variable
u,, is initialized at the value B. After the execution of e, this temporary variable is set
back to its old value again. Next, both the continuation of the sending object, supplied
with the result B’ of the execution of the method m, and the given continuation p are
to be executed in parallel. This explains the last resumption: f(B') || p.
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Now that we have defined the semantics of send expressions and answer statements
let us briefly return to the definition of = |, p (Definition 5.2). Let 7 =(a, m, B, f, q)
(the result from the elaboration of a send expression) and p = (a, m, g) (resulting from
an answer statement). Then 7 |, p is defined as

7. p={(o,gB)) | 9}

We see that the execution of the method m proceeds in parallel with the independent
resumption g of the sender. Now we know how g is defined we have

g(B)f)=Ao-{(c', Fe(en)(a)(AB" - AG - {(&", f(B) | PYI))}

The continuation of the execution of m is given by AB' - AG - {(&, f(B') || p)}, which
consists of a state transformation followed by the parallel composition of the continu-
ations f and p. This represents the fact that after the rendez-vous, during which the
method is executed, the sender and the receiver of the message can proceed in parallel
again. (Of course, the independent resumption g may still be executing at this point.)
Moreover, the result B8’ of the method execution is passed on to the continuation f of
the send expression.

(S4, sequential composition)  Fi(s, ; s5)(a)(p) = Fs(s,)(a)(Fs(s2)(@)(p)).
(S5, conditional)
ﬁs(if e then s, else s, fi)(a)(p) =I:"E(e)(a)(/\ﬁ -if B=1t
then Fs(s,)(a)(p)
else Fs(s:)(e)(p)
fi).
(86, loop statement)
ﬁs(do e then s od)(a)(p)
= Ao {(o, Fe(e)(@)(AB) -if B=11
then I:“s(s)(a)(Fs(do e then s od)(a)(p))
else p

fi))}.

(End of Definition 5.3.)

It is not difficult to prove that ¥, is a contraction and hence has a unique fixed
point 9. As a matter of fact, we have defined ¥, such that it satisfies this property.
Note that the original functions Fg and Fg have been used in only three places: in
the definition of the semantics of a new-expression, of an answer statement, and of a
loop statement. Here the syntactic complexity of the defining part is not necessarily
less than that of what is being defined. At those places, we have ensured that the
definition is “guarded” by some step Ao - {{o”, - - -)}. It is easily verified that in this
manner the contractiveness of ¥, is indeed implied.

DEerFiNITION 5.4 (Denotational semantics of a unit). We define [- - -], : Unit - P.
For a unit U € Unit, with U={(: -, C,<s,), - ), we set

[Ule = Ds[s.1(»(2))(po)-

The execution of a unit always starts with the creation of an object of class C,
and the execution of its body. Therefore, the meaning of a unit U is given by the
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denotational meaning of s¢, the body of class C,, supplied with »(&), denoting the
name of the first active object, and with p,, the empty continuation.

Comparison with [ABKR86(b)]. There are some differences between the denota-
tional semantics (P, D) presented here and the denotational semantics given in
[ABKR86(b)]: The former model is given as the fixed point of a contraction ¥, and
does not use so-called environments to deal with process creation (new (C)) and the
meaning of the execution of a method (answer m); the latter model is defined without
the use of a contraction and does use environments. In [ABKR86(b)], the semantics
of a unit U is given with the help of a special environment 7y, which contains
information about the class and method definitions in U and is obtained as the fixed
point of a suitably defined contraction. Another difference is the way the loop statement
is treated: In this paper, the definition of its semantics fits smoothly in the definition
of (Dg, Ds) as a fixed point. In [ABKRS6(b)], a contraction is defined especially for
this case.

Another way to express these differences is that the three constructs for recursion
present in POOL (i.e., the new expression, the answer, and the loop statement) are
treated here by means of one fixed-point definition, whereas in [ABKR86(b)], environ-
ments are used for the first two forms of recursion and a specially defined contraction
for the last one. However, we state (without proof) that the two definitions are
equivalent: it is straightforward how to translate the one approach into the other.

An additional difference between the denotational semantics of a unit given here
and the one presented in [ABKR86(b)] is the presence of a semantic representation
of the standard objects in the latter, whereas these are not treated in this section. As
mentioned before, we do not treat standard objects now because we want to concentrate
on the correctness proof. In order to show, however, that our proof (to be presented
in § 7) can also deal with standard objects, we shall extend, in Appendix I1I, both our
operational and our denotational semantics with a semantic representation of standard
objects, and prove that the correctness result still holds for these extended models.

6. An intermediate semantics. After having defined an intermediate semantics Oy
for ?;,(LStat) and a denotational semantics 9y, for Lg and Ls we shall, in the next
section, discuss the relationship between the two. As we did in § 2, we shall compare
Oy and 9, by relating both to an intermediate semantics 07 : P;,(LStat) > P, the
definition of which is the subject of this section.

DEFINITION 6.1 (Intermediate semantics 0%,). Let U € Unit. Let 0 : P;,(LStat) >
P be given by

', = Fixed Point (DY),
where
&' : (P (LStat) > P) > (P, (LStat) > P)
is defined, for F e %;,(LStat)~> P and X € #;,(LStat), as follows. _
If for all @ and s [(a, s)€ X =>s=E], then ®,(F)(X) = p,. Otherwise we have
U(F)(X)=Ao- (CrUSpUAF)
where
Cr={(o', F(X"): (X, 0)= U, 7> (X", o)},
SF = {(Bl b} ma B2’ AB : F({(aa d/(ﬁ))}), F(X'»:
<X’ U)_ U, (C\!, Bl !m(B2))'—)<{(a= ¢)}U X" U')},
Ar={(a, m, gn): (X, 0)= U, (a 7m)>{(a, s)}U X", o)}
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with
g =AB - A (AG-{(G', Delenl()(AB" - A6 - {(6", /(B") | F({(e, )M} || F(X"),
and
¢'=0{B/a,un},  &'=6{F:(a)(un)/a, un},
m&{u,,, e,ye U.

(It is straightforward to show that ®7, is a contraction.)

The function 0, differs from the operational semantics 0, in two ways. First, its
range is the semantic universe P, which is used for the denotational semantics @,
instead of P, the semantic universe of Oy: For every set X € P,(LStat) the function

', yields a process 0’,(X )€ P, rather than a function from states to sets of streams
of states. Second, in addition to the computation steps (indicated by the set Cr above)
single-sided communication steps are present in 0% (X ) (indicated by Sr and Ag, for
send and answer steps), whereas 0., (X) contains only computation steps. On the other
hand, the sinilarity between the definitions of 0y and 0, is obvious: both are based
on the transition relation —U - for 0y, (LStat).

At first sight, two facts regarding the relation between 07, and %, can be
mentioned. First, they have the same range, that is, the semantic universe P of processes,
in which single-sided communication actions are visible. Second, 9@, is defined compo-
sitionally with the use of semantic operators (like the merge | ), whereas the definition
of 0 is based, as was mentioned above, on the transition relation —U -.

In the next section the relationship between 0, 07, and @ will be formally
expressed. Let us, for the time being, try to elucidate the definition of 0, above by
explaining what communication steps are present in 07 (X).

Corresponding with every send transition of the form

(X,0)=U, (e, Bi!m(B:)) > {(e, Y)IU X", 0)

the set 0y, (X)(0o), for a state o€ =, contains a send step of the form

(Br, m, B2, AB - Oy ({(a, ¥(B))}), Ou(X")).

Here B8,, m, and B, indicate that a message specifying the method m with parameter
B» is sent to the object B,. The dependent resumption of this send step is
AB - O0y({(e, ¥(B))}): the meaning of the statement that will be executed by « as soon
as it receives the result B of the message. The last component of this send step, the
independent resumption, consists of 0, (X"), which is the meaning of all the statements
executed by objects other than a. Thus it is reflected that these objects need not wait
till the message is answered; they may proceed in parallel.
Next, 0(X)(o) can contain some answer steps. For every answer transition

(X, )= U, (a?m)>{(a, 5)}U X', o)
the set 0% (X)(o) includes an answer step

<a9 ma gm>,

with g, as in the definition above. It indicates that the object « is willing to answer
a message specifying the method m, while the resumption g,, indicates what should
happen when an appropriate message arrives. This function g,,, when supplied with
a parameter 8 and a dependent resumption f (both to be received from the sending
object), consists of the parallel composition of the process 0, (X’) together with the
process

AG-{(0', Delen](a)(AB"- A6 - {(6", f(B) || Ou({(a, )}
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(Note that we have used the function 9@, here; the definition of 0, therefore depends
on its definition.) The process 0',(X’) stands for the meaning of all the statements
executed by objects other than the object a: these objects may proceed in parallel
with the execution of the method m, the meaning of which is indicated by the second
process. Its interpretation is the same as in the definition of @s[answer m](a)(p) in
the previous section but for the fact that here the last resumption of this process consists
of f(B") || 0u({(a, 5)}): the parallel composition of the dependent resumption of the
sender (supplied with the result B’ of the method m) and the meaning of the statement
s, with which the object o will continue after it has answered the message.

7. Semantic correctness. We are now ready to establish the main result of this
paper. We shall relate the operational semantics 0, and the denotational semantics
Dy by first comparing 0, and 07, the intermediate semantics defined in the previous
section, and next comparing 0, and 9. These relationships will be formally expressed
by means of suitably defined abstraction operations. From this we shall deduce the
fact that

[Ule = abstr([Uls),
where abstr: P- P is such an abstraction operation.

7.1. Comparing @ and O},. We start with the definition of abstr: P— P, which
relates the semantic universes P and P of 0 and 0',.

DEFINITION 7.1 (Abstraction operation abstr). Let abstr: P> P be defined as
follows. We set abstr( p,) ={e}. If pe P\{p,}, then

{3} if p(o) N Comps =,

abstr(p) = Ao {U {0 abstr(p’)(c"): (0", pYep(o)} otherwise,

where Comps =2 x P. (Formally, we can define this operation correctly by giving it as
the fixed point of a suitably defined contraction on P~ P: See Appendix II for an
extensive formal treatment of the function abstr.)

The function abstr transforms a process p € P into a function abstr(p)e P=%X~
P rcompact(23), which yields for every o € X a set abstr(p)(o) of streams. (If one regards
the process p as a treelike structure, these streams can be considered the branches of
p.) If p(o) N Compp = &, thatis, if p(o) is empty or contains only single-sided communi-
cation steps, then we have a case of deadlock because, operationally, single-sided
communication is not possible. Therefore we then have that abstr( p)(o) ={a}. If,
however, p(o’) does contain a computation step (¢, p’), then we have that: o' - abstr(p’)
(o’) < abstr(p)(o). The changed state o' is concatenated with abstr( p')(¢'), in which
o' is passed through to abstr applied to p’, the resumption of (o', p"). Thus the effect
of different state transformations occurring subsequently in p is accumulated.

Next, we use the operation abstr to relate @, and Y.

Tueorem 7.2 (Relating @, and ®Y). For all Fe Pin(LStat) >
P[®(abstro F)= abstre (<D’U(F))J.

Proof. Let Fe @;,(LStat)> P, X e P;,(LStat), and oeX. Suppose \Wa Vs
[(a,s)e X=>s=E]. If (X, 0)—U, 7, then

@, (abstr e F)(X)(o) =13}
= abstr(® 'y (F)(X))(0),

since @, (F)(X)(o) N Compps = . (Recall that Compp =X X P)If(X,o)- U, 7>, we
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have

& (abstro F)(X)(o)=\UJ{o" - (abstro F)(X')(0"):{X, o) — U, 7=>(X', o)}
=J{o" (abstr(F)(X"))(0"): (X, oy — U, 7>(X', o)}
= [see Definition 6.1]

abstr(Ao - Cr)(a)

= abstr(Ao- (CrU Sr U Ap)) (o)
= abstr(PL(F)(X))(0o)
= (abstro ®L(F))(X)(0o).

Since @, and ®, are contractions and thus have unique fixed points, the following
corollary is straightforward.
COROLLARY 7.3. O, = abstro 0.

7.2. Comparing 0, and @,. To compare O}, : Py, (LStat) > P and 9, € Qr X Qs
we define an extension of @, (=(Dg, Ds)) in two steps. First, we define P,
(=(DE, D) € Qk X Qs, with
Qs =L - AObj— Contg~'P, Qs=L5-> AObj~ Conts~>'P,
which is as 9, but with the extended sets of expressions and statements L and L,
for its domain. (Recall that LY is used in the definition of LStat = AObj x L§.) Next,

we extend 2, to D% : Py, (LStat) > P, which takes sets of labelled statements for its
arguments.

DEeFINITION 7.4 (27). Let¥y,: (Qe X% Q's) > (Q% % Q%) be defined as follows. For
F =(Fg, Fs), we clenote 1~I’_’U(F) by F=(Fg, Fs). Let a € AObj, pe Conts=P and
fe€ Contg = Obj—» P. Now F is defined similarly to ¥ (F) (Definition 5.3) but with
the following clauses added:

Fe(B)(a)(f)=f(B) for e Obj= A0V,
Fe((e, @))(@)(f) = Fg(e)(a)(AB - Fe(e(B))(a)(f)),
Fs(E)(a)(p)=p,
F(release (B, 5))(a)(p)=p || Fs(s)(B)(po),
Fs((e, ¢))(a)(p) = Fe(e)(a)(AB - Fs(y(B))(a)(p)).
Finally, we set
Dy =Dk, Ds)
= Fixed point (V7).

The meaning of (e, ¢) is obtained by first evaluating the expression e, then
substituting the result B8 into the parameterized expression ¢ and finally eval-
uating the expression ¢(B). The interpretation of Di[(e, )] is similar. In
D[release (B, s)](«)(p), the meaning of the statement s (when executed by the object
B and with the empty continuation p,) is computed and composed in parallel with

the process p, the continuation of the release statement.
DEFINITION 7.5 (2%)). Let 2% : P,,(LStat)> P be given by

2% =(9Y),
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where ~:(Qg xQS)e(@ﬁn(LS£at)-a}3) is defined as follows. If F=(Fg, Fs), then
~(F), here being denoted by F is given by

F{(ay, s1), -+, (aw, )1 = Fs(s)(a)(po) || - - + || Fs(si) () (po)-

(We put F(Z)=p,.) . . .

Note that we have that F(X U Y) = F(X) || F(Y).

The omission of parentheses in the parallel composition above is justified by the
fact that || is associative.

Given a finite set X of labelled statements («;, s;), the value of 27 (X) is obtained
by first computing the semantics of every labelled statement («;, 5;) € X. This is given
by Ds[s:]1(a;)( po), where the label «; indicates the name of the object executing the
statement and where p, indicates that after s; nothing remains to be done. Next, all
the resulting processes are composed in parallel.

Now that we have extended the domain of & to P;,(LStat) we are ready to
prove the fact that &% = @,. It is a straightforward corollary of Theorem 7.7 below.
The proof of this theorem makes use of the following lemma.

Lemwma 7.6. For all a € AObj and € Lps we have

VB[P WD) ((a, y(BND) = DE{(a, ¥ (B)IN]=
Vee L [®L(2T){(a, (e, ¥)}) = DEH({(, (e, y))D)]

Proof. The proof uses induction on the complexity of expressions. We treat two
simple basic cases, being (lazy and) confident that these will show the reader how to
proceed in the other cases. So let « € AObj and ¢ € Lps and suppose that

VBRI U(2E){(a, ¢(BNH = DT ({(a, ¥(B)D]
For e = we have
W @E (@, (B, YN =P u(DH){ (o, ¥(B))})
=[hypothesis]
2 {(e, (BN}
=25[y(B)I(a)(po)
= 25[(B, ¥))(a)(po)
=2 {(a, (B, ¥))});
if e= B,!m(B-) then
V(DE) (e, (B!m(B2), ¥))}) = Ao~ {(By, m, B2, AB - DE({(e, $(B)))), pol}
= Ao+ {(B1, m, B2, AB - DS[Y(B)](@)(po), pot
= DE[Bil(2)(AB] - DE[B:](a)
(ABY - Ao - {(B1, m, By, AB - Ds[¥(B)](a)
(Po), Po)}))
= DE[B1!m(B)(a)(AB - DS[w(B))(a)(po))
= DS[(B !m(Ba), ¥)](a)(po)
=25 {(a, (B1!m(B2), ¥))}).
THEOREM 7.7. ®(DF) =D%F.
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Proof. We show: VX € P4, (LStat) [®L(DF)(X) = DF(X)], using induction on
the number of elements in X. .
Case 1. X ={(a, s)}, with e € AObj, se L§.

The proof uses induction on the complexity of the statement s. We treat some
typical cases.
(i) answer m:

OU(DE){(a, answer m)}) = Ao+ {{&, m, g,)}
with
8n = AB A AT - {(0, De[en](a)(AB"- A& - K&, f(B') | DT((a, DI}
=AB- A A0 - {(6, Delenl(a)(AB" - A5 - {(G", F(B NN

{and ¢’ and & as in Definition 6.1). If we compare this to the definition of @s[answer m]
(Definition 5.3(S3)) we see

Ao {{a, m, gn)} = Ds[answer m](a)( po)
= 9% ({(a, answer m)}).
(ii) x <« e: we distinguish two subcases. First, if e= 8, then
U2 {(e, x <« B)}) =ro - {{o{B/a, x}, po)}
= DE[Bl(«)(AB - Ao - {(o{B/a, x}, po}})
= Di[x < Bl(a)(po)
=25 ({(a, x< B)}).
If e g Obj, then
DU(DF){(a, x « e)}) =[definition —U -]
=0y (2E)((a, (e, Au- x<u))})
=[see (v) below]
DH{(a, (e, Aau- x<u))})
= Delel(a)(AB - Di[x < Bl(a)(po))
=[x < e(a)(po)
=2H({(a, x<e)}).

(iii) s, ; $-: case analysis for s, .
(iv) do e then s od:

DL (DF)({(a, do e then s 0d)})
= A0 {{0, DT ({(a, if e then s ; (do e then s od) else E fi)}))}
= Ao {{o, Delel(a)(AB - if B=tt then
Dl s](«)(Di[do e then s od](a )(p,)) else p, i)}
= P4l do e then s od](a)( po)
=% ({(a, do e then s 0d)}).

(v) (e, ¢): by induction we have that the theorem holds for (a, ¢(8)), for every
B € Obj. Now we can apply Lemma 7.6.
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Case 2. X € P;,(LStat) and X has at least two elements. Suppose we have two
disjoint sets X, and X, in P,(LStat) with X = X, U X, such that

,U(@;’fl)(xi) = @TJ(XE)
for i=1,2. Assume X,,X,# {{ay, E), - -,{a,, E)}. We shall show that from this
induction hypothesis it follows that
DL(DENX,UX,)=2FH(X, U X,).

(ThlS is proved in very much the same way as the fact that @’ (@)(p)— (p) and
(@)(Tr)—@(w) implies <I>(£D)(p m)=%(p"m), which occurs in Theorem 2.14
of §2.)
From the definition of —U - (Definition 4.8, (R10) and (R11)) it follows that

OL(DENX UX,)=Ao (XTUXTUZ).

Here
X7 ={0", DH(XTU X)) (X, o) = U, 7>(X1, o)}
U{(B1, m, B2, AB - DL ({(e, w(BNY), DL(XTU Xo)):
(X1, 0)= U, (a, B Im(B2)) > (XU {(a, ¥)}, o)}
Ulla, m, gn): (X1, 0) = U, (@ Tm) > (X[ U{(a, 5)}, o)}
with

gn=AB- Af+ (Ao -{(¢", De[en](2)(AB' - AG
e, (B | DE{(e, NN DEH(XTU X))

and e,,, &' and &' as in Definition 6.1. The set X5 is like X but with the roles of X,
and X, interchanged. Finally,

Z={0', DEU(B1, (em, Att+ (U, < 02(B1) () 5 release (a, yr(u)) 5 5)))} U XU X3)):
(Xi, 0)= U, (o, By Im(B2)) > {(a, ¥)}U X}, o) and
(‘Xj’ 0")— [J’ (ﬁl?m)—><{(ﬁlss)}UX;ao->a for i= 17]=2 or i=2’.]= ]}

(and o' = 0{B./ B1, Um}, m<(U,,, e,)€ U). The steps in X{ correspond to the transition
steps that can be made from X,U X, as a result of a transition step from X; (by an
application of (R10) in the definition of —U —), for i=1, 2.

The set Z contains those steps that correspond with a communication transition
from X, U X,, which results from a send transition from X; and an answer transition
from X; (fori=1, j=2, or i=2, j=1) by an application of (R11).

Now we have

X7=0u(2H) (X)) 25(Xa),
X =2 (2H) (X)) DTH(X)),
Z=0u(2)(X,)(0) |, (D) (X:)(0).

The proofs of these facts are not difficult (but tiresome and therefore omitted). It
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follows that
O UDENX,UX)=Ar0-(XTUXTUZ)

= Ao (PU(DENX) ()L DT(X)
Udu(25)(X) (o)L DE(X))
U u(2%)(X:)(0) |, PU(DT)(X2) ()

= [induction hypothesis]

Ad - (DHX ()L DH(X)

U 2% (X) (o)L 25(X))
U2%(X)(0) |- DT(X2)(0)

=[definition ||] 2F(X,) || 2%(X>)

=9FH(X,UX,).

This concludes the proof of Theorem 7.7. |

Since 0", and 9%, are both fixed points of the same contraction ®,, they must
be equal.

COROLLARY 7.8. 0 =%,

7.3. Collecting the results. We have proved that 0, = abstr o 0, and that 07, = 97F,.
Thus we have the following theorem.

THEOREM 7.9. Oy = abstr o %,

From this theorem we deduce the main theorem of this paper.

THeOREM 7.10. [U]e = abstr([ U] ).

Proof. Let U={((---,C,<&<s,), ). Then

[Ule= 0ul{(»(D), s,)}]
= abstr(25,({(v(D), 5.)}))
= abstr(Ds[[s.1(»(D))(po))
= abstr(Ds[[s,1(v(D))(po))
= abstr([U]a).

Appendix 1. Mathematical definitions.

DeriNITION 1.1 (Metric space). A metric space is a pair (M, d) with M a nonempty
setand d a mapping d : M x M - [0, 1] (a metric or distance) that satisfies the following
properties:

(@) Vx,ye M[d(x,y)=0&x=y],

(b) Vx,ye M[d(x, y)=d(y,x)],

(¢} Vx,y,ze M[d(x, y)=d(x,z)+d(z y)].

We call (M, d) an ultra-metric space if the following stronger version of property (c)
is satisfied:

(c) Vx,y,ze M [d(x, y)=max {d(x, z), d(z, y)}].

Please note that we consider only metric spaces with bounded diameter: the distance
between two points never exceeds one.
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Examples 1.1.1. (a) Let A be an arbitrary set. The discrete metric d, on A is
defined as follows. Let x, y € A, then

0 ifx=y,

d"(x’y)z{l if x5y

(b) Let A be an alphabet, and let A= A*U A“ denote the set of all finite and

infinite words over A. Let, for x e A™, x[n] denote the prefix of x of length n, in case
length(x)Zz n, and x otherwise. We put

d(x y) — 2vsup{n:x[n]=y[n]}

with the convention that 27 =0. Then (A™, d) is a metric space.

DeriNiTION 1.2. Let (M, d) be a metric space, let (x;); be a sequence in M.

(a) We say that (x;); is a Cauchy sequence whenever we have: Ve>0 INeN
Yn, m> N[d(x,, x,) <e].

(b) Let x € M. We say that (x;); converges to x and call x the limit of (x;); whenever
we have: Ve>0 AneN Va> N[d(x, x,) <e]. Such a sequence we call convergent.
Notation: lim,_ . X; = x.

(c) The metric space (M, d) is called complete whenever each Cauchy sequence
converges to an element of M.

DeriniTION 1.3, Let (M,, d,), (M,, d,) be metric spaces.

(a) We say that (M,, d,) and (M., d-) are isometric if there exists a bijection
f:M;-> M, such that: Vx, ye M|[d,(f(x), f(y)) =d,(x,y)]. We then write M,=M,.
When f is not a bijection (but only an injection), we call it an isometric embedding.

(b) Letf: M, - M,bea function. We call f continuous whenever for each sequence
(x;); with limit x in M, we have that lim,_. f(x;) = f(x).

(c) Let A=0. With M, »* M, we denote the set of functions f from M, to M,
that satisfy the following property: Vx, y € M[do(f(x), f(¥)) S A- di(x, y)].
Functions f in M, »' M, we call nonexpansive, functions f in M, »“ M, with0=¢ <1
we call contracting. (For every A= 0 and fe M, >* M, we have that f is continuous.)

ProposITION 1.4 (Banach’s fixed-point theorem). Let (M, d) be a complete metric
space and f: M - M a contracting function. Then there exists an x€ M such that the
following holds:

(1) f(x)=x (x is a fixed point of f),

(2) Vye M[f(y)=y=>y=x] (x is unique), |

(3) Vxge M[lim, .. f™(x5) = x1, where f"" " (xo) =f(f*"(x0)) and f'*'(x0) = xo.

DerFINITION 1.5 (closed and compact subsets). A subset X of a complete metric
space (M, d) is called closed whenever each Cauchy sequence in X has a limit in X
and is called compact whenever each sequence in X has a subsequence that converges
to an element of X.

DerINITION L6. Let (M, d), (M,,d,), - - -, (M,, d,) be metric spaces.

(a) With M, > M, we denote the set of all continuous functions from M, to M,.
We define a metric dr on M, M, as follows. For every f, o€ M,=> M,

dr(fi, £2) = sup {d:(fi(x), Lo(x))}.

xe M,
For A=0 the set M, > M, is a subset of M;~> M., and a metric on M, >“M, can
be obtained by taking the restriction of the corresponding d. ‘
(b) With M, U - - - U M, we denote the disjoint union of My, -+, M,, which can
be defined as {1} x M, U+ - -U{n}x M,. We define a metric dy on M{U---UM, as
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follows. For every x,ye M, U - - - U M,

di(x,y) ifx,ye{j}xM;, 1=j=n,
1 otherwise.

du(x,y)‘—“{

(¢) We define a metric dp on M, X -+ -x M, by the following clause. For every
(xla' "7xn)a (}’1,' ’ '9yn)eM1x' ) 'XMn

dp((x1, %), (V15 5 Ya)) = max {di(x;, y)}.

(d) Let Pupsea(M)={X: X< MnaX is closed}. We define a metric dy on
P etosea( M), called the Hausdorff distance, as follows. For every X, Y € P yea( M) with
X, YT

dy(X, Y)=max {sup {d(x, Y)},sup {d(y, X)}},

xeX ¥
where d(x, Z) =" inf,., {d(x, z)} for every Z< M, xe M. For X # & we put
dy (D, X)=dy(X, @)=1.
The following spaces:
Peompact (M) ={X: X = M A X is compact},
P pcompact(M) ={X: X € M A X is nonempty and compact}

are supplied with a metric by taking the respective restrictions of dy,.

(e) Let ce[0, 1]. We define: id.(M,d)=(M, c- d).

ProposiTiON 1.7. Let (M, d), (M,,d,), -+, (M,,d,), dg, dy, dp, and dy be as
in Definition 1.6 and suppose that (M, d), (M,,d,), -, (M,, d,) are complete. We
have that

(a) (M, iMz,iF), (M, >4 M,, df),

(®) (MU ---UM,, dy),

(©) (M- xM,,dp),

(d) (g)closed(M)s dH)’ (@compact(M)a dH) and (@ncompact(M), dH) are Complete metric
spaces. If (M, d) and (M,, d;) are all ultra-metric spaces these composed spaces are again
ultra-metric. (Strictly speaking, for the completeness of M, > M, and M, »* M, we do
not need the completeness of M,. The same holds for the ultra-metric property.)

The proofs of Proposition 1.7(a)-(c) are straightforward. Part (d) is more involved.
It can be proved with the help of the following characterization of the completeness
of the Hausdorff metric.

ProposITION 1.8. Let (P p5ea( M), dy ) be as in Definition 1.6. Let (X;); be a Cauchy
sequence in P ..q(M). We have

lim X; ={lim x; | x; € X, (x;); a Cauchy sequence in M}.
The proof of Proposition 1.8 can be found in [Du66] and [En77]. The completeness
of the Hausdorff space containing compact sets is proved in [Mi51].

Appendix II. The function abstr. The definition of abstr: P— P can be viewed as
a fixed-point characterization of a somewhat differently and more intuitively defined
operation

abstr*: P P,

which we introduce below. Next, we show that abstr = abstr*.



SEMANTIC CORRECTNESS FOR POOL 375

DerFINITION IL.1 (abstr*). Let pe P and c€ X, and let we S5.
(1) We call w a finite stream in p(o) if there exist (o, p,), - - -, {on, p,y such that

w=o, o, AVl= i<n[<0'i+1aPi+1)€Pi(Ui)]/\<0'1,P1>EP((T)/\Pn=P0-
(2) We call w an infinite stream in p(o) if there exist (o, , p,), (0, p»), - - - such that
w=0,0,- - AV1I=i[{01, pir) Epi(0)] a0y, pep(o).

(3) We call w a deadlocking stream in p(c) if there exist (o;, p,), {0, Pu)
such that

w=ao,- -0, dIAV1I=i<n[{oi1, Pis1) € pi(07)]
n (o1, p)EP(T) A Py # Poa Palc,) N (EX P) = 2.
Now we define a function abstr*: P P by
abstr*(p)=Ao-{w: wis a stream ip plo)}.

We have to verify that for every pe P and o € X the:set abstr*(p)(o) is compact.
This is not trivial and is proved in Theorem I1.3 below (which is a slightly generalised
form of Lemma AIl.4 in [BBKMS84]). The fact that we use in the definition of P
compact subsets rather than closed ones is essential for the proof. (For a process
domain defined with closed subsets, [BBKM84] provides a counterexample of the
theorem.)

In the proof of Theorem I1.3 below, we need the following lemma.

LemMA I1.2. Let g =1lim, .« q,, for q, 4. € P: assume (without loss of generality)
that for alln=0

d(q, qn)§2—(n+l)
Let o€ 3 and let (w;); be a sequence in 23 with w; € abstr*(g;)(o), for every iz 0. Then
Vn 3u[w,[n] - ueabstr*(g)(o)]

Proof. Let w,[n]=0, - - o,. (In the case of termination or deadlock the rest of
the proof is analogous to this case.) Now there must be q', -+, q" with

(o1,9"eq.(0) and (oi,q" Heqg' (o)

for 1=i=n We shall show that there are §',---,§" with {0y, g"Yeq(o) and
(0141, G ") € G'(0;) for 1 =i = n. We do this inductively as follows. For i =1 we observe
thatd(q, g,)=2"""",s0 d(q(o), g.(0)) =27" =}. Because (0, g"ye q,(c), there must
be a §' with

(0y,3%eq(o) and d(q',g")=27"
For the inductive step, let 1 =i = nand let §' be such that d(q', §) = 27" Then
d(g'(0),q'(e))=27"""=1.
Because (0., g "'y € q'(0;) there must be a ' with

<0f+1 B qu)e éi(tf;) and d(qiﬂ, qiﬂ) §2—"“.
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With g',-- -, @" suitably chosen, we can take u € abstr*(gG")(o,) arbitrary, and
then w,[n] - u will be in abstr*(q)(o).

THeorEM 11.3. For every p € P and o €3 the set abstr*(p)(o) is compact.

Proof. Let (w;); be a sequence in abstr*(p)(o). We shall show that there exists a
subsequence of (w;); that has its limit in abstr*( p)(o). First we introduce some notation.
For an arbitrary word we X3, w(k) indicates the word that is obtained from w by
omitting the first k elements. We call p,= p, oo = 0, and f, = idy, the identity function
on the set of natural numbers. We shall inductively construct for every n =0 a function
f»:N->N, a process p, € P, and a state o, such that

1. Viz0[w,nl=o0,--- o,

2. Vi, 0=i<n[{(0i11, pir1) € pi(0)].

3. 3(w); in abstr*(p,)(o,) Yiz 1[w[i]=wy o (m[i]].

4. f, is monotonic and there exists a monotonic h with f, =f,_, o h.

Once we have constructed such sequences (f;,),, (p.)n, and (o,),, we are done. We
can define

g(i) = fi(i).
This function is monotonic and we have
hm Wg(i)=0'1 tOyt .
100

Since o, - 0, -+ - € abstr*(p)(o) we thus have found a subsequence (wg(;)); of (w;);,
which has its limit in abstr*(p)(o).

The construction is as follows. Suppose we are at stage n=0. Let (v;); be a
sequence in absir*(p,)(o,) satisfying property 3, above. Let for every i=1

Then there are g}, g5, - - - € P with
(r},qyep.(0,) and Vjiz1[(rl,,gl)e gi(r)].
Since the set p,(0,) is compact, the sequence ({r}, q})); has a converging subsequence
that is given by, say, the monotonic function h and that has a limit, say {7, q) in p,(0o,)-
We may assume
Viz1[riV=1nrd(qi", q)=27U"1].
Now we take
Pni1=q Oni1 =7, fon=f.oh
In order to show that this construction works, we must verify that p,.,, 0,+,, and

fn+1 again satisfy properties 1-4 above.
1. We have for every i=1:

wr o oln+t1l=w, olnl- w,, m(n+1)
=07 0t Wy, n)(1)

=01 0n¢ Vh(i)(l)
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=01 Opt Opy-

2. We have (011, Par1) = (7, @) € py(0,).
3. To prove this property, we are going to apply the following version of Lemma
11.2. For all q, q;, ¢, - *€ P, and for all x,, x5, - -€Z7,

Viz1[d(q, ) =2"""" ax;€ abstr*(g;)(o)]
This we now use. Since
ViZ 1[d(pas1, q1) =27 A m(1) € abstr* (g7) (041)]
there must exist a sequence (v}); in abstr*(p,+)(on+,) With
Viz 1[vi] = m (DL
Now
vha DLl = V,,(,-)[h(i)](l)[i]
= w . o{mh(D)XDII]
= wj, . o{nXD[i]
=wy,,,{n+ D[]
(Here we have used twice the fact that h(i)> i, for all i=1.)
4. By definition.
This concludes the proof of Theorem I1.3.
Next we show that the function abstr: P - P, given in Definition 7.1, can be defined
as the fixed point of a contraction. _ _
DeriniTiON 11.4 (Formal definition abstr). We define E:(P »' P)~> (P ' P);
let FeP -»'P, Pe P, and o0 €X. We put
E(F)(po)(o)={e},
E(F)(p)(a)={3} if p(c) N Comps=2.
Otherwise, we set
E(F)(p)(o)=U{o"- F(p")(o'):{o", p"y e p(a)}.
Finally, we define
abstr = Fixed point (E).
It is straightforward to show E is contracting. The fact that for every p€ P and
o e the set E(F)(p)(o) is compact needs some explanation. In order to prove this,
it is convenient to adapt the definition of E a little. Recalling that P=3 - P rcompaci (23 ),
we define
B (P X2) > Preompacd(£5)) > (P XZ) > Priompac(23)),
where the superscript 1 above the arrow indicates that we consider only nonexpansive
(and hence continuous) functions, by

E(F)(p, o) =U{a"- F(p',a")): (o', pye p(a)}.
Now

E(F)(poN= U {0 F{(p,oN}

(o', pYep(o)

=U (o' - {F(p',o): (o', phep(a)})
=U (0" F{(p', o): (o', prep(a)})).
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This union can be seen to be compact by first observing that from the compactness of
p it follows that the union is finite: the set

{o':3p’e P[{o", p) € p(0)]}
is finite. The compactness of p(o) further implies the compactness of the isomorphic
set
{(p’, o): (o', phep(o)},

forevery o' € £, which is preserved under the continuous mapping F and the concatena-
tion with o'. So we have a finite union of compact sets, which is again compact. Now
the compactness of Z(F)(p)(o) follows straightforwardly from the compactness of
E'(F)({p', o), for arbitrary F’, p’, and o'. The fact that Z(F) is again nonexpansive
is also easily verified.

We conclude this Appendix by showing that abstr and abstr* are equal.

THEOREM IL5. abstr = abstr*. _

Proof. Consider pe P—{p,} and o € X such that p(o) N (2 x P) # . Then

w € abstr*( p)(o) < [definition abstr*]
Jo'eX Iw'elXy Ip'ePlw=o' - waweabstr*(p)(c')]
& [definition E]
we E(abstr)(p)(o).

The other cases are easy. We see: abstr* = E(abstr*). Because = is a contraction the
theorem follows. (Note the similarity of this proof and the one of Theorem 4.14.)

Appendix III. Standard objects. We want to extend the language under consider-
ation with a few standard classes of so-called standard objects, namely, the classes
Boolean and Integer. On these objects the usual operations can be performed, but
they must be formulated by sending messages. For example, the addition 23+11 is
indicated by the send expression 23!add (11), sending a message with method name
add and parameter 11 to the standard object 23. The set of expressions L, given in
Definition 3.1, is extended with these standard objects:

e == x|ule,! m(e,)|new (C)|s ; elself|a,
where a € SObj, with
SObj =Z U {1, ff}.
Recall that we already defined (in Definition 4.1)
Obj = AObj U SObj
(=AO0bjUzZU{n f}).

Intuitively, the evaluation of the expression «, with @ € SObj, results in that object
itself. For instance, the value of the expression 29 will be the integer 29.

Below, we shall first extend the definition of the operational semantics, next we

adapt the definition of the denotational semantics (following [ABKR86(b)]), and
finally we shall prove that the equivalence result of § 7 still holds.

ITI.1. Standard objects in the operational semantics. We extend the set Ly, given
in Definition 4.2, with the standard objects:

e = x|ule, ! m(e,)|new (C)|s ; e|self|c|(e, ¢),

where now a € Obj = AObj U SObj.
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Next we add to the set of labelled statements (Definition 4.5) an abstract element
S, that represents all standard objects and for which transitions will be specified in a
moment:

LStar* = LStat U{S,}.
The following transitions are possible from S,:
{8}, o) ~n?add~({S}, o), (S} o)—n2sub->({S}, o),
{8}, 0)=brand~>({S},0),  ({S},0)~blor>({S},0),
{S}, o) =b Inot > ({S,}, o)

for every neZ and be {1, ff}. (This list can be extended with transitions for other
operations.) Communication with a standard object is now modelled by the following
transitions:

If ({(e, 5)}, 0) — (@, n'ladd (m)) > ({(a, ¥)}, o),
then ({(a, 5), S;}, o) — v > {(e, Y(n+m)), S,}.

If {{(e, 3)}, o) — (@, by 'and (b,)) = {(a, ¢}, o),
then ({(a, 5), S;}, o) =y > {(e, (b, A by)), S}, o),

and by similar transitions for the other operations. The result of, for example, an
addition of the integers n and m is computed and passed through to the parameterized
statement of the object requesting the execution of the method add.

Finally, the operational semantics of a unit (Definition 4.11) is changed by taking
into account the standard objects; we put

[Ule = 0ul{(»(D), sn), S:3]-

(In the operational semantics defined in [ABKR86(a)], the standard objects are treated
somewhat differently. There no special rules are given for the communication with a
standard object; instead, some axioms are added that replace in one step a send
expression that addresses a standard object by the corresponding value of the result.)

II1.2. Standard objects in the denotational semantics. The denotational meaning
of a standard object « € Lg is given by

Delal(B)(f) = f(a),

where B € AObj, and f e Contpg. B

We follow [ABKR86(b)] in introducing a process ps € P that represents the
denotational meaning of the standard objects. For this we have to adapt our semantic
process domain P. In Definition 5.1 the domain P is given by

15 E{Po} U id1/2(2*> @compuct(StepF_’))'

In order to let the standard process pg;, to be defined below, fit into our semantic
domain nicely, we are forced to use closed subsets of steps rather than compact ones.
Let us indicate the process domain given in Definition 5.1 by P.,. We introduce here
P.,, which satisfies

Pcl E{PO} U idl/Z(E—) @clused(Stepﬁ‘,))'

We have, via an obvious embedding, that P,, < Pa.
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Next we introduce pg, € P.;, which represents the meaning of all standard objects.
It satisfies the following equation:

psi=Ao - ({(n,add, g,): neZ}
U{(n,sub, g,): neZ}
U {(b,and, g3): be{it, ff}}
U{(b,or, gp): be{t, ff}}
U{(b,not, g,): be {1, ff}}),

where.
gn=AB € Obj* - Afe Obj > P- (if B€Z then f(n+B) | ps. else ps, i),

. =MAB e Obj* - \fe Obj- P- (if BeZ then f(n—B) | ps, else ps, fi),
gh=AB e Obj* - Afe Obj—> P- (if Be{t, ff} then f(ba ) | ps. else ps, fi),
gi=AB<c Obj* - Afe Obj> P- (if Be{1, ff} then f(bv ) || ps else ps, fi),
g, =B € Obj* - Af € Obj > P- f(—1b) || ps..

This definition is self-referential since ps, occurs at the right-hand side of the
definition. Formally, ps, can be given as the fixed point of a suitably defined contraction
on Pcl-

We observe that ps, is an infinitely branching process, which is an element of P,
but not of P,,. This explains the introduction of P,,.

The operational intuition behind the definition of pg, is the following: For every
neZ the set pg,(o) contains, among others, two elements, namely (n, add, g,) and
{n, sub, g.). These steps indicate that the integer object n is willing to execute its
methods add and sub. If, for example by evaluating n!add (n'), a certain active object
sends a request to integer object n to execute the method add with parameter n’, then
€., supplied with n’ and the continuation f of the active object, is executed. We have
that g,(n")(f) is, by definition, the parallel composition of f supplied with the
immediate result of the execution of the method add, namely n+ n’, and the process
Ps:, Which remains unaltered: g (n')(f) =f(n+n’) | ps.. (A similar explanation applies
to the presence in pg, (o) of the triples representing the Booleans.)

The standard objects are assumed to be present at the execution of every unit U.
Therefore we adapt the denotational semantics of a unit (Definition 5.4) as follows:

[Ula = Ds[s.0(»(2))(po) || ps:-

II1.3. Semantic equivalence. Finally, we extend the arguments presented in § 7 to
show that for the modified versions of [ U]y and [ U], as presented above, we still have

[Ule = absir([U] o).

We begin by adapting the intermediate semantics 0%, (Definition 6.1), which will
now be of type

0% : Psn(LStat*) - P,.
We put
OVU({SI}) = Dst
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and for X < LStat*—{S,} (= LStat):
u(XU{SH=0u(X) | ou({S],

with 0y (X) as defined according to Definition 6.1.
Next we extend the definition of abstr to an operation:

abstr*: P, - (- P(Z)),

where abstr* is defined as in Definition II.1. Please note, however, that for processes
pe P, itisin general not the case that abstr*( p)(o) is a closed subset of 23" Fortunately
we can prove the following, which turns out to be all we need.
TueoreM IIL1. For every pe P, and o€ 2: abstr*(p || ps,)(o) is compact.
Proof. The proof is analogous to the one for Theorem I1.3, given the additional
observation that for every p € P,, the set

(p |l ps)(@) N (Ex Py)

is compact, which we prove now.
According to the definition of || we have

(p | ps) (@) =p(o) Lps: Upsi(@)LpU p(o) o psi (o).
From the continuity of || and the compactness of p(o) it follows that
(p(a@)Lps) N(ExPy)={(c", p" || ps): (o', pYe p(a)}
is compact. Second, the set
(ps: (@)L pP)N(Ex Pyy)
is empty. Finally, we show that
(P() |0 psi(0)) N (Ex Po)

is compact. Consider a sequence ({(o, g;)); in this intersection. We show that it has a
converging subsequence ({0, gx)));. According to the definition of |, there exist
sequences ({oy, m;, B;, f;, p:)); in p(o) and ({a;, m;, €)); in ps:(o) such that

qi= g,(ﬁ.)(f.) “ Di-
Because p(o) is compact there exists a monotonic function k:N-N such that
(<ak(i), My iy, Briiys Jeiins Pk(i)))i

is convergent. From the definition of the metric on P, it follows that we may assume
that there exist @, m, and B such that for all i

=, Myip=m, Bxi= B-

The definition of ps, implies that for every (@, m, g) in ps,(o) the function g is entirely
determined by a and m. Thus

(Cakciys Mici» gin)i = ((a, m, gkm>).~ =((a, m, g)),
for some g. Suppose we have
f= ,IL‘EE, Jernp= }{_fg Pr(iys
then (a, m, B, f, p)e p(o) and
lim (o, g.) = (0, §(B)(S) | P)€ (P() o Ps:(eD N (Z X Pa). O

COROLLARY I11.2. abstr* o O € Ps,(LStat*) - P.
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(Recall that P =% P, ompaci(Z3)-)

TueoreM 1113, Oy = abstr*< 0.

This theorem can be proved by showing that in addition to 0y also abstr® o 0%,
is a fixed point of ® . This can be done analogously to the proof of Theorem 7.2.
From this observation and the fact that &, is a contraction the theorem follows.

The definition of &%, which is given in Definition 7.5, is also changed. It will be
a function of type

D% : Py (LStat*) > P,
that is, like the original @¥ but for the clause that

2H(S}) = ps-

A last step toward the goal of this third Appendix, which is to prove the semantic
equivalence of the denotational and operational semantics with standard objects
present, consists of the observation that Theorem 7.7, stating that

(DY) =BT,

can be proved for the new version of @7 as well. The extended proof involves some
new case analysis (within Case 2), concerning the communications with standard
objects. This being the last Appendix, this step being the last step towards our goal,
and the author being only human, we omit the details and state without proof:

TueoreMm 111.4 (Extended version of Theorem 7.7). ®,(2F)=9%.

CoroLLARY IIL5 (Extended version of Corollary 7.8). 0' = @%.

Finally we are ready to prove the extended version of the main theorem, Theorem
7.10, of our paper.

THeoREM IIL1.6. [U]y = abstr*([U]y).

Proof.

[Ulo = 0ul{(»(D), s.), S}
= [Theorem II1.3]
abstr* (0, ({(»(D), s), S.}))
=[Corollary II1.5]
abstr*(DE({(v(D), 5.), S 1)
= abstr*(Ds[s,1(»(D3))(po) || ps.)
= abstr*([U]a).
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